
557

18 Performance Analysis 
for Large IaaS Clouds

Rahul Ghosh, Francesco Longo, 
and Kishor S. Trivedi

18.1 � INTRODUCTION

IaaS clouds are major enablers of data-intensive cloud applications because they 
provide necessary computing capacity for managing Big Data environments. In a 
typical IaaS cloud, virtual machine (VM) instances deployed on physical machines 
(PM) are provided to the users for their computing needs. Recently, IaaS cloud 
providers are realizing that merely providing the basic functionalities for Big Data 
processing is not sufficient to survive intense business competitions. Rather, the 
performance of the cloud provided service is an equally important factor when a 
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558 Large Scale and Big Data

user signs up for the service contract. We observe that, to date, most of the IaaS 
cloud providers offer SLAs only in terms of guaranteed availability. With increas-
ing demand and popularity of cloud services, we believe that performance SLAs 
will also be necessary in the near future. However, performance analysis of a cloud 
infrastructure is difficult due to a variety of reasons. Hardware (e.g., CPU speed, 
disk properties), software (e.g., nature of hypervisor), workload (e.g., arrival rate), 
and many other management characteristics (e.g., placement policy) can impact the 
overall cloud performance.

To evaluate the performance of a cloud, broadly three choices can be made. First, 
one can carry out experimentation for measurement based performance quantifica-
tion. Unfortunately, scale of cloud becomes prohibitive in terms of time and cost of 
such measurement-based analysis. Second, discrete event simulation can be used as 
another alternative [1]. Still, such simulation can take a long time to get statistically 
significant results. Third, stochastic models can be used as a low-cost option where 
the model solution time is much less compared with simulation and experimenta-
tion. However, stochastic models may not scale given the size and complexity of a 
cloud system. For cloud environments processing large data sets, the state space of 
the developed Markov model tends to be very large as the model takes into account 
many details of the system. This well-known largeness problem of stochastic model 
arises because of a growing number of model states as the number of system com-
ponent increases. As the model size becomes prohibitively large, the generation and 
solution of such a model become a tedious task, if not impossible. Simplifying a 
model to reduce complexity may turn out to be fatal as the model might diverge 
from the realistic scenario. Hence, a scalable modeling approach that can preserve 
accuracy is of interest.

In this chapter, we describe the principle of scalable stochastic modeling approach 
with an example of performance analysis for an IaaS cloud that are large scale and 
well-suited for Big Data environments. The proposed approach is based on interac-
tions among several submodels, where the overall solution is composed by iteration 
over individual submodel solutions. Scalability and tractability are two key features 
of our approach when compared with a one-level monolithic modeling approach 
[8]. Thus, interacting submodels can provide results for large clouds within rea-
sonable solution time. A comparison of analytic–numeric results between the two 
approaches also show the accuracy of the proposed interacting submodels approach. 
An additional benefit of the proposed approach is that submodels often become sim-
ple enough to obtain a closed-form solution. Stochastic modeling software packages 
such as SHARPE [20] and SPNP [11] can be complemented using such closed-form 
expressions when the system becomes too large.

Key contributions of this chapter are the following: (1) We demonstrate that scal-
able stochastic models can be developed and solved for large-scale performance 
analysis of IaaS clouds. (2) Interested readers can extend submodels shown in the 
chapter by modifying the provided SHARPE codes. (3) Such modeling approaches 
can help in what-if analysis of overall cloud performance. Especially, we show how 
bottlenecks in provisioning delay can shift with varying cloud capacity and job ser-
vice characteristics.
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559Performance Analysis for Large IaaS Clouds

The rest of the chapter is organized as follows. A three-pool cloud architecture is 
described in Section 18.2. Our performance analysis approach will be based on the 
system described in Section 18.2. The main idea of interacting submodels approach 
is presented in Section 18.3. Analytic–numeric solutions of the interacting submodels 
and comparison with monolithic model solutions are presented in Section 18.4. Section 
18.5.2 presents discussions on the proposed approach, possible extensions and some 
highlights on related research. Finally, this chapter is concluded in Section 18.6.

18.2 � A THREE-POOL CLOUD ARCHITECTURE

We consider an IaaS cloud where PMs are grouped into multiple pools based on 
power consumption and response time characteristics. Specifically we consider three 
pools: hot, warm, and cold. Figure 18.1 shows the overall architecture and request 
provisioning steps. In the hot pool, all PMs are running and VMs need to be config-
ured and deployed as per user request. In contrast, PMs in the warm pool are turned 
on but not running. Warm PMs initially remain in a power-saving/sleep mode and 
they are turned on whenever a deployment request comes. Thus, provisioning a VM 
in the warm pool requires additional delay compared with PMs in the hot pool. PMs 
in the cold pool are initially turned off. Hence, provisioning a VM in the cold pool 
requires additional delay. Notice that, power consumption of a hot PM is maximum, 
whereas the power consumption of a cold PM is minimum. Grouping the PMs in 
multiple pools helps the provider to maintain a tradeoff in service offering, based on 
power consumption and response time characteristics [9].

We assume that the service requests are homogeneous and each request is for one 
VM instance with specific CPU, RAM, and disk capacity. Throughout this chapter, 
we use the term job to denote a service request. When a request arrives, Resource 
Provisioning Decision Engine (RPDE) tries to find a PM from the hot pool that can 
accept the request. If all the PMs in hot pool are already busy in running jobs, RPDE 
tries to find a PM from the warm pool. If no such PMs are available in the warm 
pool, RPDE tries to find a cold PM that can accept the job. A request is rejected if 
none of the PMs in the hot/warm/cold pool can accept the request. The elapsed time 

Run-time
execution

Job rejection
due to buffer full 

Job rejection due to
insufficient capacity

Arrival Queuing Instantiation VM
deployment 

Actual service Out

Resource
provisioning

decision
engine

Provisioning
decision

Provisioning response delay

FIGURE 18.1  Request provisioning steps in a three-pool cloud architecture.
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560 Large Scale and Big Data

duration between the submission of a request to cloud and the VM made available to 
the user is called response delay. We use job rejection probability and response delay 
as the two performance metrics for our analysis.

18.3 � INTERACTING SUBMODELS FOR PERFORMANCE ANALYSIS

18.3.1 � CTMC Submodel for RPDE

Figure 18.2 shows the CTMC model for RPDE. The input parameters for this 
submodel are: (i) job arrival rate (λ), (ii) mean searching delays to find a PM  in  a 
hot/​warm/cold pool that can be used for resource provisioning (1/δh, 1/δw, and 
1/δc, respectively), (iii) probabilities that a hot/warm/cold PM can accept a job for 
resource provisioning (Ph, Pw, and Pc, respectively), and (iv) maximum number of 
jobs in RPDE (N). All the input parameters can be measured directly except the 
probabilities Ph, Pw, and Pc. These probabilities are computed from the outputs of the 
VM provisioning submodel as described later.

We briefly describe the CTMC submodel here. Detailed description of the sub-
model can be found in [8]. The state index of the CTMC in Figure 18.2 is denoted 
by ( j, x), where j denotes the number of jobs in the queue and x denotes the type of 
pool where the job is undergoing provisioning decision. In state (0, 0), there is no 
job in the system. When RPDE is trying to find a PM from the hot pool, x is set to h. 
Similarly, x is set to “w” (or “c”), when RPDE is deciding if any warm (or cold) PM 
can accept the job. With the arrival of a job, model moves from state (0, 0) to state 
(0, h) with rate λ. Three possible events can occur in state (0, h): (a) a job is accepted 
in hot pool with probability Ph, (b) with probability (1 − Ph), the submodel goes to 
state (0, w), (c) the submodel goes to state (1, h) with the arrival of a new job. The rest 
of the submodel can be followed in the similar manner.

It is possible to derive a closed form solution for the state probabilities on the 
model shown in Figure 18.2. Assume that π( j,x) denotes steady-state probability of 
state ( j, x), where 0 ≤ j ≤ (N−1) and x ∈ {0, h, w, c}.

0, 0
λ

λ

λ λ λ

λ λ

δhPh

δwPw

δwPw
δwPw

δwPw

δcPc

δcPc

δcPc

δcPc

δh(1 – Ph)

δw(1 – Pw)
δw(1 – Pw) δw(1 – Pw)δc(1 – Pc)

δc(1 – Pc)

δc(1 – Pc)
δc(1 – Pc)

δh(1 – Ph) δh(1 – Ph)

δhPh δhPh δhPh

λ λ λ…

…

…

0, h

0, w

0, c
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FIGURE 18.2  Resource provisioning decision engine submodel.
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561Performance Analysis for Large IaaS Clouds

The general forms of steady-state probabilities to be in states (k,h), (k,w), and (k,c) 
are given by

	 π(k,h) = A(k,h)π(0,0)	 (18.1)

	 π(k,w) = A(k,w)π(0,0)	 (18.2)

	 π(k,c) = A(k,c)π(0,0)	 (18.3)

where 1 ≤ k ≤ (N − 2),

	 A(k,h) = XYA(k,c) − YZA(k−1,c) − WA(k−1,w) = YA(k,w) − WA(k−1,w)	 (18.4)

	 A(k,w) = X A(k,c) − Z A(k−1,c)	 (18.5)
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(18.6)

	 A(−1,h) = 1	 (18.7)

	
W
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=
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δ ( )1 	
(18.8)
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562 Large Scale and Big Data

Steady-state probabilities of states (N−1,h), (N−1,w), and (N−1,c) are given by

	 π(N−1,h) = λ /δhπ(N−2,h) = λ /δhA(N−2,h)π(0,0)	 (18.12)

	
π λ δ π δ

δ
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(18.15)

Observe that steady-state probabilities of all states in the CTMC of Figure 18.2 
can be expressed as a function of the steady-state probability of state (0,0). Using 
normalization,

	

π π π π( , ) ( , ) ( , ) ( , )( )0 0

0

1

1+ + + =
=

−

∑ i h i w i c

i

N

,

	

(18.16)

we can compute the steady-state probability of state (0,0) and all other states.

18.3.1.1 � Submodel Outputs

	 (i)	 Job rejection probability (Preject). Job rejection probability due to buffer 
full is given by

	 Pblock = π(N−1,h) + π(N−1,w) + π(N−1,c)	 (18.17)

		  Jobs can also be rejected if during the provisioning decision steps, all 
(hot, warm, and cold) PMs are fully occupied. Thus, job rejection probabil-
ity due to insufficient PM capacity is given by
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(18.18)
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563Performance Analysis for Large IaaS Clouds

	 Equation 18.18 can be explained in the following way. In states, π(i,c), jobs 
can be rejected if there is no cold PM is available for provisioning. To com-
pute the job rejection probability, we use a Markov reward approach [19]. 
A reward rate of δc(1 − Pc)/λ is assigned to each state and the overall prob-
ability is computed as expected steady-state reward rate.

	 (ii)	 Mean number of jobs in the RPDE queue ( [ ])E N
RPDE . We can compute the 

RPDE queue length as

	

E N i
R i h i w i c

i

N

PDE  = + +
=
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∑ ( )( , ) ( , ) ( , )π π π
0

1

	

(18.19)

	(iii)	 Mean queuing delay (E[Tq_dec]). Conditioned upon the job not being 
rejected, we can compute mean queuing delay using Little’s law [21]:
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1

1 bblock dropP− ) 	
(18.20)

	 (iv)	 Mean decision delay (E[Tdecision]). Conditioned upon the job not being 
rejected, this is given by

	

E T
P P

P
decision

h h w w c

bl

  =
+ − + −

−
1 1 1 1

1

/ ( )( / ( ) / )δ δ δ

oock dropP−( ) 	

(18.21)

18.3.2 � SHARPE Code for the RPDE Submodel

The RPDE submodel can be implemented using SHARPE software package, as 
shown below.

format 8
* Markov model for RPDE; all rates are in jobs/hr
bind
lambda	 1000
delta_h	 20*60
delta_w	 20*60
delta_c	 20*60
N	 100
* Dummy values for P_h, P_w, and P_c
* These values will be computed from VM provisioning sub-model
P_h	 0.8 
P_w	 0.9
P_c	 1.0
end
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564 Large Scale and Big Data

markov provision_decision
0_0	 0_H	 lambda
0_H	 0_0	 delta_h*P_h
0_W	 0_0	 delta_w*P_w
0_C	 0_0	 delta_c
loop	 i,0,N-2
	 $(i)_H	 $(i+1)_H	 lambda
	 $(i)_W	 $(i+1)_W	 lambda
	 $(i)_C	 $(i+1)_C	 lambda
end
loop	 i,1,N-1
	 $(i)_H	 $(i-1)_H	 delta_h*P_h
	 $(i)_W	 $(i-1)_H	 delta_w*P_w
	 $(i)_C	 $(i-1)_H	 delta_c
end
loop	 i,0,N-1
	 $(i)_H	 $(i)_W	 delta_h*(1-P_h)
	 $(i)_W	 $(i)_C	 delta_w*(1-P_w)
end
end
end
* Blocking probability
bind	 P_block	 (prob(provision_decision,$(N-1)_H)+prob​
(provision_decision,$(N-1)_W)+prob(provision_decision,$(N-1)_C))
* Dropping probability
bind	 P_drop	(delta_c*(1-P_c)/(lambda)) * (sum(p, 0, (N-1), 
prob(provision_decision, $(p)_C)))
* Overall job rejection probability
bind	 P_reject	 (P_block + P_drop)
* Mean number of jobs in RPDE
bind	 mean_num_RPDE  sum(p, 0, (N-1), (p+1)​*(prob(provision_
decision, $(p)_H)+prob(provision_decision, $(p)_W)+prob​
(provision_decision, $(p)_C)))
expr	 P_block
expr	 P_drop
expr	 P_reject
expr	 mean_num_RPDE
end

The above SHARPE code shows how states and transitions can be specified in 
a SHARPE input file. For example, the first line within the Markov model provi-
sion_decision shows that the model moves from state 0_0 to state 0_H with rate 
λ. Also, notice the use of loop statements to describe the structure of the CTMC. 
Input parameters Ph, Pw, and Pc are originally computed from VM provisioning sub-
models. However, we use some dummy values in the above code to demonstrate the 
working of the SHARPE input file to the readers. Detailed SHARPE input file for 
the interacting submodels can be found in [7]. Detailed tutorials on SHARPE can 
be found in [1].
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565Performance Analysis for Large IaaS Clouds

18.3.3 � CTMC for VM Provisioning

We construct one CTMC submodel for a hot, warm, and cold PM respectively. 
Overall VM provisioning submodel of a pool is modeled by a set of independent 
submodels that represent each PM in the pool. These submodels keep track of num-
ber of VMs running on a PM.

18.3.3.1 � Hot PM CTMC
Figure 18.3 shows the VM provisioning submodel for a hot PM. State index of this 
model is denoted by (i, j, k), where, i denotes the number of jobs in queue, j denotes 
number of provisioning VMs, and k denotes number of deployed VMs. The model 
input parameters are: (i) effective job arrival rate (λh), (ii) VM provisioning rate (βh), 
(iii) service rate (μ), (iv) size of buffer (Lh), and (v) maximum number of VMs that 
can run in parallel (m). The value of j is 0 or 1, since we assume that the VMs are 
provisioned one at a time. With nh PMs in the hot pool, λh is given by

	
λ λ

h
block

h

P

n
= −( )1

	
(18.22)

Notice that Pblock in Equation 18.22 is computed from RPDE submodel. All other 
input parameters can be measured. As shown in Figure 18.3, after a job arrival sub-
model moves from state (0,0,0) to state (0,1,0), with rate λh, mMean VM provisioning 
time on a hot PM is 1/βh. Submodel moves from state (0,1,0) to state (0,0,1) with rate 
βh. The mean service completion time is 1/μ. When the service finishes, VM instance 
is removed and the submodel moves from state (0,0,1) to state (0,0,0) with rate μ. The 
rest of the submodel can be described in a similar manner. Notice that by using a 

0,0,0 0,1,0 Lh,1,0

0,0,1 (Lh − 1),1,1 Lh,1,1

1,0,m Lh,0,m

Lh,1,(m − 1)
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(Lh − 1),1,(m − 1)0,0,(m − 1) 0,1,(m − 1)

…

…
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2µ 2µ
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µ µβh

βh βh

βh βh

βh

βh βh

βh

βh βh

λh λh

λh
λh

λh λh

λh

λh

λh

λh
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λh λh

FIGURE 18.3  VM provisioning submodel for each hot PM. λh is an effective job arrival rate 
to each hot PM, βh is rate of VM provisioning on hot PM, μ is job service rate, Lh is buffer size, 
m is the maximum number of VMs on each PM.
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566 Large Scale and Big Data

state-dependent multiplier to the VM provisioning rate βh, our submodel can easily 
be extended for parallel deployments of multiple VMs.

It is possible to derive closed-form solutions of the state probabilities when Lh → ∞, 
and m → ∞. In such a case, it can be shown that the CTMC can be represented as a 
two-stage tandem network of queues as shown in Figure 18.4. Observe that node A is 
an M/M/1 queue with server utilization ρA = λh/βh, while node B is an M/M/∞ queue 
with server utilization ρB = λh/μ. For node A, steady-state probability mass function 
(pmf) of i jobs (i > 0) waiting in the queue and j VMs ( j ∈ {0,1}) being provisioned 
is given by

	 p i jA A A
i j

A( , ) ( )= − <+1 1ρ ρ ρwhere, 	 (18.23)

For node B, steady-state pmf of k VMs (k > 0) running, is given by

	
p k

k
eB

B
k

B( )
!

= −ρ ρ

	
(18.24)

Thus, for the hot PM CTMC shown in Figure 18.3, when Lh → ∞ and m → ∞, the 
steady-state probability of being in state (i, j, k) is given by

	
φ ρ ρ ρ ρ

( , , )
( ) ( )

!i j k
h

A A
i j B

k

k
e B= − + −1

	
(18.25)

where i ≥ 0, j ∈ {0,1}, k ≥ 0, ρA = λh/βh, and ρB = λh/μ. The condition for stability of 
the system is ρA < 1.

18.3.3.2 � Hot PM Submodel Outputs
The steady-state probability (Bh) that a hot PM cannot accept a job for VM provision-
ing can be obtained after solving the hot PM submodel:

	
Bh L i

h
L m
h

i

m

h h
= +

=

−

∑φ φ( , , )
( )

( , , )
( )

1 0

0

1

	

(18.26)

Node  A Node  B

λh

FIGURE 18.4  Hot PM modeled as a two-stage tandem network of queues. The queuing 
system consists of two nodes: (i) node A is a M/M/1 queue, with service rate βh and (ii) node 
B is a M/M/∞ queue, with service rate of each server being μ.
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567Performance Analysis for Large IaaS Clouds

Probability (Ph) that a hot pool can accept a job for provisioning is given by

	 P Bh h
nh= −1 ( ) 	 (18.27)

Observe that Ph is used as an input parameter in the RPDE submodel (Figure 18.2).

18.3.4 � SHARPE Code for Hot PM Submodel

We present the SHARPE code for hot PM submodel below.

format 8
bind
* Dummy value of P_block
P_block	 0.01
P_not_blocked	 1-P_block
lambda	 1000
beta_h	 12
m	 4
Lh	 2
mu	 1
n_h	 10
epsilon_zero	 0.000001
end
* Function to compute effective arrival rate for each hot PM
func lambda_h(i)
if (i==0)
	 0
else
	 lambda*P_not_blocked/i
end
end
* Markov model to describe VM provisioning model for hot PM
markov hot(num_hot)
loop	 i,0,m-1
	 0_0_$(i)	 0_1_$(i)	 lambda_h(num_hot)
end
loop	 j,0,m-1
	 loop	 i,0,Lh-1
		  $(i)_1_$(j)	 $(i+1)_1_$(j)  lambda_h(num_hot)
	 end
end
loop	 i,0,Lh-1
	 $(i)_0_$(m)	 $(i+1)_0_$(m)  lambda_h(num_hot)
end
loop	 i,0,m-1
	 0_1_$(i)	 0_0_$(i+1)	 beta_h
end
loop	 j,0,m-2
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	 loop	 i,1,Lh
		  $(i)_1_$(j)	 $(i-1)_1_$(j+1) beta_h
	 end
end
loop	 i,1,Lh
	 $(i)_1_$(m-1)	 $(i)_0_$(m)	 beta_h
end
loop i,1,m
	 0_0_$(i)	 0_0_$(i-1)	 i*mu
end
loop	 j,1,m-1
	 loop	 i,0,Lh
		  $(i)_1_$(j)	 $(i)_1_$(j-1)	j*mu
	 end
end
loop	 i,1,Lh
	 $(i)_0_$(m)		  $(i-1)_1_$(m-1) m*mu
end
end
end
* hot_full(i) computes value of 1-Ph with `i’ hot PMs
func hot_full(i)
if (i==0)
	 1
else
	 ^(i*ln(sum(p, 0, m-1, prob(hot,$(Lh)_1_$(p);i)) + 
prob(hot,$(Lh)_0_$(m);i)))
end
end
func	 compute_Ph(i)
if(i == 0)
	 0
else
	 if(lambda_h(i) > epsilon_zero)
		  (1-hot_full(i))
	 else
		  1
	 end
end
end
bind	 P_h	 compute_Ph(n_h)
expr	 P_h
end

Observe the use of functions to compute the values of different input parameter 
and output measures. Input parameter effective job arrival rate is computed using 
the function lambda_h(.). Steady-state probability that a PM cannot accept a job 
for provisioning is given by the function hot_ full(.), while Ph is computed using the 
function compute_Ph(.). Further, the value of Pblock is obtained as an output from 
the RPDE submodel, but we use a dummy value to describe the working of the code.
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569Performance Analysis for Large IaaS Clouds

18.3.4.1 � Warm PM CTMC
Warm PM CTMC is shown in Figure 18.5. Although warm PM CTMC is similar 
to hot PM CTMC, there are few differences that set them apart. Jobs arrive to the 
warm PM pool only if they are not provisioned on any of the hot PMs. Thus, effec-
tive arrival rate (λw) to each warm PM is

	
λ λ

w
block h

w

P P

n
= − −( )( )1 1

	
(18.28)

Initially, (state (0,0,0) in Figure 18.5), it is turned on but not ready for use. When 
a job arrives, the warm PM requires some additional startup delay to be able to start 
provisioning and the CTMC submodel goes from state (0,0,0) to state (0,1*,0). We 
assume that (i) time to make a warm PM ready for use is exponentially distributed 
with mean 1/γw, (ii) provisioning delay of the first VM on a warm PM is 1/βw, and 
(iii) provisioning delay for subsequent VMs is the same as that for a hot PM, that is, 
1/βh. The buffer length of each warm PM is assumed to be Lw.

λw

µ

2µ

mµ mµ
mµ

(m – 1)µ (m – 1)µ
(m – 1)µ

(m – 1)µ

2µ
2µ

µ
µ

µ

γw γw

λw

λw

βw
βwβh

βh βh βh

βh βh
βh βh

βh βh

βh

λw

λw

λw

λw λw
λw

λw

λw λw λw

λw λw λw

λw

0,0,0 0,1*,0 Lw,1*,0

Lw,1**,0

Lw,1,0

Lw,1,10,0,1 (Lw − 1),1,1

…

…

1,0,m Lw,0,m

Lw,1,(m − 1)

0,0,m

(Lw − 1),1,(m − 1)0,0,(m − 1) 0,1,(m − 1)
…

…

…

…

…

0,1,0

0,1**,0
…

0,1,1

FIGURE 18.5  VM provisioning submodel for each warm PM.
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18.3.4.2 � Warm PM Submodel Outputs
Steady-state probability (Bw) that a warm PM cannot accept a job for VM provision-
ing is given by

	
Bw L

w
L
w

L
w

w w w
= + + +φ φ φ φ( , *, )

( )
( , , )
( )

( , **, )
( )

(1 0 1 0 1 0 LL i
w

L m
w

i

m

w w, , )
( )

( , , )
( )

1 0

1

1

+
=

−

∑ φ
	

(18.29)

Assuming nw as independent warm PM submodels for the whole pool, the prob-
ability (Pw) that warm PM can accept a job for provisioning is computed as

	 P Bw w
nw= −1 ( ) 	 (18.30)

18.3.4.3 � Cold PM CTMC
Cold PM CTMC submodel is shown in Figure 18.6. The overall cold pool submodel 
is the set of nc independent cold PM submodels. Key differences between a warm and 
a cold PM submodel are (i) effective arrival rates (λw vs. λc), (ii) startup rates (γw vs. γc), 
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FIGURE 18.6  VM provisioning submodel for each cold PM.
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(iii) initial VM provisioning rates (βw vs. βc) and buffer sizes (Lw vs. Lc). Effective 
arrival rate (λc) to each cold PM is given by

	
λ λ

c
block h w

c

P P P

n
= − − −( )( )( )1 1 1

	
(18.31)

18.3.4.4 � Cold PM Submodel Outputs
The steady-state probability (Bc) that a cold PM cannot accept a job is given by

	

Bc L
c

L
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L
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( , , )
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−
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(18.32)

Thus, the probability (Pc) that at least one PM in a cold pool can accept a job is 
given by

	 P Bc c
nc= −1 ( ) 	 (18.33)

SHARPE codes for the warm and cold PM submodels can be developed in a simi-
lar manner [7] as shown in Section 18.3.4. From the VM provisioning submodels, we 
can also compute mean queuing delay (E[Tq_vm]) and conditional mean provisioning 
delay (E[Tprov]) [8]. The mean response delay is then given by

	 E[Tresp] = E[Tq_dec] + E[Tdecision] + E[Tq_vm] + E[Tprov]	 (18.34)

18.3.5 � Submodel Interactions

Figure 18.7 shows the interactions among the submodels as an import graph [5]. 
Steady-state probabilities (Ph, Pw, and Pc) that at least one PM in a pool (hot, warm, 

VM
provisioning 
submodels Hot pool

submodel
Warm pool
submodel

Cold pool
submodel

RPDE
submodel Pblock

Outputs from
performance model

Job rejection probability and mean response delay

E[Tresp]=E[Tq_dec]+E[Tdecision]+E[Tq_vm]+E[Tprov]

Preject =Pblock+Pdrop

Pblock

PblockPh

Ph

Ph

Pc

Pw

Pw

FIGURE 18.7  Interactions among the submodels.
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572 Large Scale and Big Data

and cold, respectively) can accept a job is computed by VM provisioning sub-
models. The RPDE submodel uses these probabilities as input parameters. Output 
measures such as rejection probability due to buffer full (Pblock), rejection prob-
ability due to insufficient capacity (Pdrop), and their sum (Preject) are obtained from 
the RPDE submodel. Observe that Pblock computed in the RPDE submodel is used 
as an input parameter in VM provisioning submodels. Also, outputs from VM 
provisioning submodels (Ph, Pw, Pc) are needed as input parameters to solve the 
RPDE submodel. Hence, there is a cyclic dependency among the submodels. Such 
dependency is resolved using fixed-point iteration [14,17]. Proof of existence of a 
solution can be shown for such fixed-point iteration [8]. Apart from existence, two 
other important issues with fixed-point iteration are uniqueness of solution and 
rate convergence. By trying different initial guesses, we have never found mul-
tiple solutions, that is, the final solution remains unique. Also, in all the scenarios 
investigated, the maximum number of iterations required was 4, which indicates 
reasonably fast convergence.

18.4 � ANALYTIC–NUMERIC RESULTS

Using SHARPE [20] software package, we solve the interacting submodels to com-
pute: (1) job rejection probability and (2) mean response delay. As shown in Figure 
18.8a, for a fixed arrival rate (1000 jobs/hour) and given number of PMs in each pool 
(e.g., 80 PMs in each pool), job rejection probability increases with longer mean 
service time. Also, at a given value of mean service time, if the PM capacity in each 
pool is increased, job rejection probability reduces. Similar effects on mean response 
delay is shown in Figure 18.8b. With increasing mean service time, mean response 
delay increases for a fixed number of PMs in each pool. To explain these effects we 
define a term called marginal gain. When all other input parameter values are kept 
unchanged, marginal gain is the amount of reduction in job rejection probability or 
mean response delay with increasing PM capacity. Notice that the marginal gains in 
Figure 18.8b, change with increasing mean service time. Marginal gain increases for 
gradual increase in PM capacity from 70 to 100 in each pool. In the example scenario 
investigated, marginal gain is maximum when the mean service time is around 1000 
minutes. We provide the following arguments to explain this behavior. For a given 
number of PMs, mean response delay has three components: (i) mean queuing delay 
in front of RPDE, (ii) mean decision delay, and (iii) conditional mean provisioning 
delay. With increasing mean service time, marginal gain changes depending upon 
a dominant component of the overall delay. For a low mean service time (100–300 
minutes), gain due to addition of more PM is almost insignificant. This is because 
jobs quickly leave the cloud, making room for new requests. As a result, small num-
ber of PMs is sufficient to keep the overall mean response delay low. When the mean 
service time of jobs increases (say 1000 minutes), for low capacity systems (e.g., 70 
PMs in each pool for our example), the mean queuing delay in front of RPDE starts 
increasing. Hence, the benefit of adding more PMs is reflected by having a lower 
mean queuing delay in front of RPDE. If the mean service time is further increased 
to 1800 minutes, the mean queuing delay in front of RPDE increases even for larger 
capacity systems (e.g., 100 PMs in each pool for our example). So, the marginal 
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573Performance Analysis for Large IaaS Clouds

gain diminishes once again. This result demonstrates that using the developed per-
formance model, one can do what-if analysis for the overall system. Specifically, 
we show that in overall mean response delay, bottleneck component (mean queu-
ing delay in this case) shifts as the job characteristics (mean service time in this 
example) and cloud capacity (PMs in each pool) are changed.
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FIGURE 18.8  (a) Job rejection probability vs. mean job service time and (b) mean response 
delay vs. mean job service time at a different number of PMs.
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We compare the scalability and accuracy of our approach w.r.t. a one-level mono-
lithic model [8]. Such a monolithic model is constructed using a variant of stochastic 
Petri net called stochastic reward net (SRN). Stochastic Petri Net Package (SPNP) 
[11] is used to solve the monolithic SRN model. In Table 18.1, we compare the solu-
tion times for both the monolithic model and interacting submodels. When the num-
ber of PMs in each pool increases beyond 3 and the number of VMs per PM increases 
beyond 38, monolithic model runs into a memory overflow problem. Even for a small 
number of PMs and VMs, state space size of the monolithic model increases quickly 
and becomes too large to construct the reachability graph. Also, for a given number 
of PMs and VMs, the nonzero elements in the infinitesimal generator matrix of the 
underlying CTMC of monolithic model, are hundreds to thousands of orders of mag-
nitude larger compared with interacting submodels [8]. In the interacting submodels, 
a reduced number of states and nonzero entries leads to concomitant reduction in 
solution time needed. As shown in Table 18.1, solution time for monolithic model 
increases almost exponentially with the increase in model size, while the solution 
time for interacting submodels remains almost constant with the increase in model 
size. This analysis shows that the proposed approach is scalable and tractable com-
pared with the one-level monolithic model.

Next, we compare the accuracy of interacting submodels approach w.r.t. mono-
lithic modeling approach. Specifically, we compare the values of two performance 
measures: (i) job rejection probability (Preject) and (ii) mean number of jobs in RPDE 
(E[NRPDE]). In Figure 18.9a and b, we show that as we change the arrival rate and 
maximum number of VMs per PM, outputs obtained from both the modeling 
approaches are near similar. Hence, the errors introduced by the decomposition of 

TABLE 18.1
Comparison of Model Solution Times (in seconds)

(#PMs per pool, #VMs per PM) Monolithic Model Interacting Submodels

(1, 1) 0.124 0.066 (n.i. = 4)

(1, 2) 0.196 0.074 (n.i. = 4)

(1, 4) 0.556 0.088 (n.i. = 3)

(1, 8) 2.998 0.141 (n.i. = 3)

(1, 16) 79.563 0.208 (n.i. = 3)

(1, 32) 188.174 0.346 (n.i. = 3)

(1, 38) 293.672 0.399 (n.i. = 3)

(1, 39) m.o. 0.406 (n.i. = 3)

(2, 1) 2.024 0.063 (n.i. = 3)

(3, 1) 166.704 0.062 (n.i. = 3)

(4, 1) m.o. 0.060 (n.i. = 2)

(500, 64) m.o. 0.055 (n.i. = 1)

Note:	 m.o., memory overflow; n.i., number of iterations.
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575Performance Analysis for Large IaaS Clouds

the monolithic model are negligible and interacting submodels approach preserves 
accuracy while being scalable. Such errors stem from the fact that we solve only one 
model for all the PMs in each pool, and aggregate the obtained results to approxi-
mate the behavior of the pool as a whole. As a result, values of the probabilities 
(e.g., Ph, Pw, Pc) that at least one PM is able to accept a job in a pool are different in 
monolithic (exact) model and interacting (approximate) submodels.
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FIGURE 18.9  (a) Job rejection probability vs. arrival rate and (b) mean number of jobs in 
RPDE vs. arrival rate.
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576 Large Scale and Big Data

18.5 � DISCUSSIONS AND RELATED RESEARCH

In this section, we discuss relevance of the models for Big Data environments, pos-
sible extensions of the developed models and outline related research.

18.5.1 �I nteracting Submodels for Big Data Analytics

Processing large volumes of data sets typically requires IaaS type of cloud services. 
In most cases, overall execution time of a Big Data processing job reduces with 
larger the number of PMs and VMs. However, provisioning such VMs quickly as 
the service demand increases is an equally important but less investigated issue. 
This chapter shows how model-driven analysis can be performed to improve over-
all provisioning delay. Specifically, scalability of the developed approach facilitates 
modeling of large IaaS pools that can host such Big Data processing environments.

18.5.2 �F uture Extensions

Although we presented in this chapter the analysis for three pools, the proposed 
approach can be extended n (>3) pools in general. For each pool, one CTMC is 
needed for a VM provisioning submodel. Also, the RPDE submodel will have n 
rows to capture the decision process across n pools. Thus, the developed modeling 
approach scales linearly with the number of pools in the cloud.

VM provisioning submodels presented in this chapter model homogeneous PMs. 
They can be extended to model heterogeneous PMs as well. Heterogeneous PMs can 
be divided into multiple classes with varying characteristics and each class can be 
represented by a pool. Then, PMs will be homogeneous within a pool and heteroge-
neous across the pools.

Different provisioning strategies can also be modeled using VM provisioning 
submodels. In this chapter, we assumed that only one job is being provisioned at a 
time, while other jobs wait in the queue. This assumption can be easily relaxed to 
model parallel provisioning of the jobs. We can use a state dependent multiplier to 
the provisioning rates (βh, βw, and βc) for modeling such cases.

18.5.3 �R elated Research

Xiong et al. [23] used response time distribution as a QoS metric for cloud performance 
analysis. However, their stochastic models do not capture details of cloud service pro-
visioning decision, VM provisioning, and release. In [23], Varalakshmi et al. addressed 
workflow scheduling in cloud to meet user-requested QoS parameters. The authors 
analyzed the PM performance behaviors using Generalized Processor Sharing queues.

Mills et al. [16] used sensitivity analysis methods to identify important input 
parameters that can affect cloud placement algorithms. Mi et al. [17] developed an 
approach to detect performance bottlenecks in large cloud services. Using hierarchi-
cal structure, the authors constructed an execution path graph of user request. Such 
an approach can be combined with our performance model to optimize the request 
placement decisions.
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577Performance Analysis for Large IaaS Clouds

In [6], Genaud et al. used simulations to evaluate scheduling strategies in cloud. 
The authors primarily focused on minimizing the wait time of jobs and the monetary 
cost of the rented resources. Our numeric–analytic models can complement such 
studies. Goudarzi et al. [10] studied optimization problems for multitier cloud appli-
cations by taking into account requests with different CPU, memory, and network 
resource requirements. Performance models developed in this paper can be extended 
for such heterogeneous requests. Yigitbasi et al. [24] performed an experimental 
analysis for the resource acquisition and release times in Amazon EC2. Our stochas-
tic models can complement these studies and analyze root-causes behind the major 
results. Performance analysis of VM live migration and its impacts on SLAs was 
studied by Voorsluys et al. [22]. Examples of other measurement based performance 
evaluation of cloud services include [2,4,12,13,18].

18.6 � CONCLUSIONS

With increasing popularity of IaaS cloud-based services, data-intensive applications 
will find a natural home in such shared and virtualized environments. While a vari-
ety of cloud providers offer similar services, performance will be a key differentiator 
among the delivered services. This chapter presents how model driven stochastic 
performance analysis can scale for large sized clouds. The main idea is to develop 
interacting submodels so that the overall model becomes scalable and tractable. Once 
developed, such scalable models can be used for what-if analysis, bottleneck detec-
tion, and capacity planning. Tools and software packages can be developed based on 
such models to assist a cloud administrator overseeing Big Data applications.

REFERENCES

	 1.	 Tutorial on the Sharpe interface, June 2013. http://sharpe.pratt.duke.edu/node/4.
	 2.	 A. Bhadani and S. Chaudhary. Performance evaluation of web servers using central load 

balancing policy over virtual machines on cloud. In COMPUTE ’10: Proceedings of the 
Third Annual ACM Bangalore Conference, pp. 16:1–16:4, Bangalore, India, 2010.

	 3.	 R. Buyya, R. Ranjan, and R. N. Calheiros. Modeling and simulation of scalable cloud 
computing environments and the cloudsim toolkit: Challenges and opportunities. In 
IEEE International Conference on High Performance Computing and Simulation 
(HPCS), pp. 1–11, Leipzig, Germany, 2009.

	 4.	 J. Che, Q. He, K. Ye, and D. Huang. Performance Combinative Evaluation of Typical 
Virtual Machine Monitors. In Second International Conference on High Performance 
Computing and Applications (HPCA), pp. 96–101, Shanghai, China, 2009.

	 5.	 G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net mod-
els. Elsevier Performance Evaluation, 18(1):37–59, 1993.

	 6.	 S. Genaud and J. Gossa. Cost-wait trade-offs in client-side resource provisioning with 
elastic clouds. In IEEE International Conference on Cloud Computing (CLOUD), 
pp. 1–8, Washington, DC, July 2011.

	 7.	 R. Ghosh. Scalable stochastic models for cloud services. PhD Thesis, Duke University, 
2012.

	 8.	 R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi. Modeling and performance analy-
sis of large scale IaaS clouds. Elsevier Future Generation Computer Systems, 2012. 
Available online: http://dx.doi.org/10.1016/j.future.2012.06.005.

D
ow

nl
oa

de
d 

by
 [

C
R

C
 P

re
ss

] 
at

 1
2:

33
 0

3 
D

ec
em

be
r 

20
14

 

http://sharpe.pratt.duke.edu
http://dx.doi.org


578 Large Scale and Big Data

	 9.	 R. Ghosh, V. K. Naik, and K. S. Trivedi. Power-performance trade-offs in IaaS cloud: 
A scalable analytic approach. In IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Workshop on Dependability of Clouds, Data Centers and 
Virtual Computing Environments (DCDV), pp. 152–157, Hong Kong, China, 2011.

	 10.	 H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for mul-
titier cloud computing systems. In IEEE International Conference on Cloud Computing 
(CLOUD), pp. 324–331, Washington, DC, July 2011.

	 11.	 C. Hirel, B. Tuffin, and K. S. Trivedi. SPNP: Stochastic Petri Nets. Version 6. In 
International Conference on Computer Performance Evaluation: Modelling Techniques 
and Tools (TOOLS 2000), B. Haverkort, H. Bohnenkamp (eds.), Lecture Notes in 
Computer Science 1786, Springer Verlag, pp. 354–357, Schaumburg, IL, 2000.

	 12.	 A. Iosup, N. Yigitbasi, and D. Epema. On the performance variability of production 
cloud services. In IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing (CCGrid), pp. 104–113, Newport Beach, CA, 2011.

	 13.	 H. Liu and S. Wee. Web server farm in the cloud: Performance evaluation and dynamic 
architecture. In International Conference on Cloud Computing (CloudCom), pp. 369–
380, Beijing, China, 2009.

	 14.	 V. Mainkar and K. S. Trivedi. Sufficient conditions for existence of a fixed point in sto-
chastic reward net-based iterative models. IEEE Transaction on Software Engineering, 
22(9):640–653, 1996.

	 15.	 H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, T. Sun, and Y. Zhou. Magnifier: Online detection 
of performance problems in large-scale cloud computing systems. In IEEE International 
Conference on Services Computing (SCC), pp. 418–425, Washington, DC, July 2011.

	 16.	 K. Mills, J. Filliben, and C. Dabrowski. An efficient sensitivity analysis method for large 
cloud simulations. In IEEE International Conference on Cloud Computing (CLOUD), 
pp. 724–731, Washington, DC, July 2011.

	 17.	 L. Tomek and K. Trivedi. Fixed-point iteration in availability modeling. In M. Dal Cin, 
editor, Informatik-fachberichte, Vol. 91: Fehlertolerierende Rechensysteme, pp. 229–
240. Springer-Verlag, Berlin, 1991.

	 18.	 S. Toyoshima, S. Yamaguchi, and M. Oguchi. Storage access optimization with vir-
tual machine migration and basic performance analysis of amazon EC2. In IEEE 
International Conference on Advanced Information Networking and Applications 
Workshops (WAINA), pp. 905–910, Perth, WA, 2010.

	 19.	 K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science 
Applications, second edition. Wiley, 2001.

	 20.	 K. S. Trivedi and R. Sahner. SHARPE at the age of twenty two. ACM Sigmetrics 
Performance Evaluation Review, 36(4):52–57, March 2009.

	 21.	 P. Varalakshmi, A. Ramaswamy, A. Balasubramanian, and P. Vijaykumar. An opti
mal workflow based scheduling and resource allocation in cloud. In A. Abraham, 
J. L. Mauri, J. F. Buford, J. Suzuki, and S. M. Thampi, (eds.), ACC (1), volume 190 of 
Communications in Computer and Information Science, pp. 411–420. Springer, 2011.

	 22.	 W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of virtual machine live 
migration in clouds: A performance evaluation. In International Conference on Cloud 
Computing (CloudCom), pp. 254–265, Beijing, China, 2009.

	 23.	 K. Xiong and H. Perros. Service performance and analysis in cloud computing. In World 
Conference on Services, pp. 693–700, Los Angeles, 2009.

	 24.	 N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-meter: A framework for per-
formance analysis of computing clouds. In IEEE/ACM International Symposium on 
Cluster Computing and the Grid (CCGrid), pp. 472–477, Shanghai, China, 2009.

D
ow

nl
oa

de
d 

by
 [

C
R

C
 P

re
ss

] 
at

 1
2:

33
 0

3 
D

ec
em

be
r 

20
14

 


	Performance Analysis for Large IaaS Clouds
	18.1 �INTRODUCTION
	18.2 �A THREE-POOL CLOUD ARCHITECTURE
	18.3 �INTERACTING SUBMODELS FOR PERFORMANCE ANALYSIS
	18.3.1 �CTMC Submodel for RPDE
	18.3.2 �SHARPE Code for the RPDE Submodel
	18.3.3 �CTMC for VM Provisioning
	18.3.4 �SHARPE Code for Hot PM Submodel
	18.3.5 �Submodel Interactions

	18.4 �ANALYTIC–NUMERIC RESULTS
	18.5 �DISCUSSIONS AND RELATED RESEARCH
	18.5.1 �Interacting Submodels for Big Data Analytics
	18.5.2 �Future Extensions
	18.5.3 �Related Research

	18.6 �CONCLUSIONS
	References


