Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications

A.R. JHA
Next-generation batteries and fuel cells for commercial, military, and space applications / A.R. Jha. p. cm.

Summary: "Next-generation batteries have higher power density and higher energy density and can be put into new forms with lower-cost mass production. This book focuses on technologically advanced secondary (rechargeable) batteries in both large and small format. It covers advanced technologies as replacements for NiCd and NiMH, especially advanced lithium-ion batteries that make use of new electrode materials and electrolytes. The author discusses printable batteries and thin-film battery stacks as enablers of micropower applications as well as hybrid battery/fuel cell systems, which are emerging as complements to consumer electronics batteries"-- Provided by publisher.

Includes bibliographical references and index.
1. Storage batteries. 2. Fuel cells. 3. Electric batteries. I. Title.
This book comes at a time during which high global demand for oil is coupled with the anticipation of a shortage in the near future. To reduce this dependency on foreign oil and eliminate the greenhouse effects associated with oil, several automobile-manufacturing companies have been engaged in the mass development and production of electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs). To address these objectives, the author of this book, A. R. Jha, gives serious attention to cutting-edge battery technology. Advanced material technology must be given consideration in the development of next-generation batteries and fuel cells for deployment in EVs and HEVs. In addition, Jha identifies and describes next-generation primary and secondary (rechargeable) batteries for various commercial, military, spacecraft, and satellite applications for covert communications, surveillance, and reconnaissance missions. Jha emphasizes the cost, reliability, longevity, and safety of the next generation of high-capacity batteries that must be able to operate under severe thermal and mechanical environments.

This book addresses nearly every aspect of battery and fuel cell technology involving the use of the rare earth materials that are best suited for specific components and possible applications in EVs, HEVs, and PHEVs. Use of certain rare earth materials offers significant improvement in electrical performance and a reduction in the size of alternating current induction motors and generators that will yield additional space inside these vehicles. Jha proposes ultra-high-purity metallic nano-technology PVD films in the design and development of the low-power batteries best suited for implantable medical devices and diagnostic applications. This particular technology can be used in the near future in the development of noninvasive medical diagnostic equipment such as magnetic resonance imaging and computed tomography scans.

Jha continues, throughout this book, his distinguished track record of distilling complex theoretical physical concepts into an understandable technical framework that can be extended to practical applications across a wide array of modern industries. His big-picture approach, which does not compromise the basic underlying science, is particularly refreshing. This approach should help present-day students,
both undergraduate and graduate, master these difficult scientific concepts with the full confidence they will need for commercial engineering applications to benefit emerging economies around the world.

This book is well organized and provides mathematical expressions to estimate the critical performance parameters of rechargeable batteries. Jha covers all of the important design aspects and potential applications of rechargeable batteries with an emphasis on portability, reliability, longevity, and cost-effective performance. This book also provides a treatment of the underlying thermodynamic aspects of cells housed in a battery pack that contains several cells. Jha identifies their adverse heating effects on the reliability and electrical performance of the battery pack. Notably, thermodynamic evaluation of the battery pack assembly is of critical importance because it can affect the reliability, safety, and longevity of the pack. Jha’s background enables him to provide an authoritative account of many of the emerging application requirements for small, lightweight, high-reliability rechargeable batteries, particularly for portable and implantable medical devices and diagnostic capsules. Jha summarizes the benefits of all-solid-state lithium-ion batteries for low-power medical devices, such as cardiac pacemakers, cardioverters, and implantable cardioverter defibrillators.

Critical performance parameters and the limits of rechargeable batteries, including state of charge, depth of discharge, cycle life, discharge rate, and open-circuit voltage, are identified. The aging effects of various batteries are identified as well. Rechargeable battery requirements for EVs, HEVs, and PHEVs are summarized with an emphasis on reliability, safety, and longevity. Memory effects resulting from voltage depression are discussed in great detail. The advantages of solid polymer electrolyte technologies are briefly mentioned because the polymer electrolytes tend to increase room temperature ionic conductivity. This increase in ionic conductivity offers improved battery performance at medium to high temperatures ranging from 60° to 125°C.

Performance capabilities of long-life, low-cost, rechargeable batteries, including silver zinc and other batteries, are summarized. Such batteries are best suited for aerospace and defense applications. Batteries for unmanned underwater vehicles, unmanned air vehicles, anti-improved explosive devices, and satellites or spacecraft capable of providing surveillance, reconnaissance, and tracking of space-borne targets are identified with an emphasis on reliability, longevity, safety, weight, and size. Cathode, anode, and electrolyte materials are summarized for several rechargeable batteries.

Jha dedicates a chapter specifically to fuel cells and describes the three distinct types of practical fuel cells, including those that use (1) aqueous electrolytes, (2) molten electrolytes, and (3) solid electrolytes. The fuel cell is an electricity generation system that combines an oxidation reaction and a reduction reaction. In a fuel cell, both the fuel and oxidant are added from an external source to react at two separate electrodes, whereas in a battery, the two separate electrodes are fuel and oxidant. Therefore, in the fuel cell in an energy conversion device, chemical energy
is isothermally converted to direct current electricity. These devices are bulky and heavy and operate mostly at high temperatures (500° to 850°C). Hydrogen-oxygen fuel cells generate high power with maximum economy and are best suited for transport buses. Electrode kinetics play a key role in achieving the most efficient operation of a fuel cell. Jha identifies the basic laws of electrochemical kinetics and notes that a superior nutrient-electrolyte media is essential for generating higher electrical power in biochemical fuel cells.

A wide variety of readers will benefit from this book, in particular the advanced undergraduate and graduate students of mechanical and materials engineering who wish to pursue a career in designing next-generation batteries and fuel cells. In view of the critical interdependencies with other technical disciplines, however, this book also is of interest to a wider variety of engineering students or practicing engineers in such industries as medical equipment, defense electronics, security, and space as well as in other yet-to-be-established disciplines. This book is particularly useful for research scientists and engineers who are deeply involved in the design of the portable devices best suited for medical, military, and aerospace systems. Technical managers will also find this book useful for future applications. I strongly recommend this book to a broad audience, including students, project managers, aerospace engineers, life-science scientists, clinical scientists, and project engineers immersed in the design and development of compact, lightweight batteries best suited for industrial, commercial, military, and space applications.

Dr. A. K. Sinha
Senior Vice President
Applied Materials, Inc.
Santa Clara, California
The publication of this book comes at a time when free nations are at odds with oil-producing nations and can be threatened with an interruption of the continuous flow of oil because of political differences and prevailing conditions in these respective regions. Western and other free nations are looking for alternative energy sources to avoid the high cost of oil and to reduce greenhouse gas emissions. This book briefly summarizes the performance capabilities and limitations of existing primary and secondary (rechargeable) batteries for the benefits of readers. I address critical and vital issues affecting the performance capabilities of next-generation batteries and fuel cells for commercial, military, and aerospace applications and propose cutting-edge battery technology best suited for all-electric and hybrid electric vehicles (HEVs) in an effort to help eliminate dependency on unpredictable foreign oil sources and supplies.

I also identify the unique materials for electrolytes, cathodes, and anodes that are most cost-effective for next-generation rechargeable batteries with significant improvements in weight, size, efficiency, reliability, safety, and longevity. Likewise, I identify rechargeable batteries with minimum weight, size, and form factor that are most ideal for implantable medical devices, unmanned aerial vehicles (UAVs), and space system applications. I identify battery designs using microelectromechanical systems (MEMS) and nanotechnologies, which are best suited for applications where weight, size, reliability, and longevity are of critical importance. Integration of these technologies would lead to significant improvements in weight, size, and form factor without compromising the electrical performance and reliability of the battery.

I propose high-power battery technologies best suited for automotive-, aircraft-, and satellite-based system applications with an emphasis on reliability, safety, and consistent electrical performance over long durations. In such applications, I recommend unique battery technologies that offer exceptionally high-energy densities that exceed 500 Wh/kg. I also describe the performance capabilities of next-generation rechargeable sealed nickel-cadmium and sealed lead-acid batteries that are most ideal for satellite communications, space-based surveillance and reconnaissance systems, unmanned ground combat vehicles (UGCVs), UAVs, and other battlefield applications where high energy density, minimum weight and size, and reliability under harsh conditions are the principal performance requirements.
This book summarizes the critical performance parameters of rechargeable batteries developed for various commercial, military, and space applications backed by measured values of parameters obtained by reliable sources through actual laboratory measurements. The book is well organized and contains reliable rechargeable battery performance characteristics for a wide range of applications, including commercial, military, and aerospace disciplines. Cutting-edge battery design techniques are discussed in the book backed by mathematical expressions and derivations wherever possible. The book provides mathematical analysis capable of projecting the critical performance parameters under various temperatures. It is especially prepared for design engineers who wish to expand their knowledge of next-generation batteries.

I have made every attempt to provide well-organized materials using conventional nomenclatures, a constant set of symbols, and easy-to-understand units for rapid comprehension. The book provides state-of-the-art performance parameters of some batteries from various reference sources with due credit given to the authors or organizations involved. It comprises eight distinct chapters, each of which is dedicated to a specific application.

Chapter 1 presents the current status of various primary and secondary (rechargeable) batteries and fuel cells for various applications. The performance capabilities and limitations of batteries and fuel cells are summarized for the benefits of readers and design engineers. The current energy sources suffer from weight, size, efficiency, discharge rates, disposal issues, and recharge capacity, thus making them unsuitable for medical, battlefield, and aerospace applications. General Motors and Siemens have invested a significant amount of money in research and development of rechargeable lithium-based rechargeable batteries for possible applications in electric vehicles (EVs) and HEVs. Current fuel cells generate electrical energy by using electrochemical conversion techniques that have serious drawbacks. I discuss direct methanol fuel cells (DMFCs) for future applications that will be found most ideal for high-, portable-power sources. DMFC technology offers improved reliability, compact form factor, and significant reduction in weight and size. I identify appropriate anode, cathode, and membrane electrode assembly configurations that will yield significantly improved electrical performance over long durations with minimum cost and complexity.

Chapter 2 briefly describes the performance capabilities and limitations of current rechargeable batteries for various applications. Performance requirements and projections for next-generation primary and secondary batteries are identified with an emphasis on cost, reliability, charge rate, safety, reliability, and longevity. I discuss the performance requirements for next-generation high-power rechargeable lithium-based batteries and sealed nickel-cadmium and lead-acid batteries best suited for applications requiring high-energy and -power densities. Battery design configurations for some specific applications are identified with a particular emphasis on safety, reliability, longevity, and portability.

In Chapter 3 I discuss fuel cells that are best suited for applications where electrical power requirements vary between several kilowatts (kW) to a few megawatts (MW).
Fuel cells generate electrical power by an electrochemical conversion technique. The early fuel cells deploy this technique, and the devices using this technique suffer from excessive weight, size, and reliability problems. In past studies I have indicated that DMFC technology offers the most promising fuel cell design configuration for applications where compact form factor, enhanced reliability, and significant reduction in weight and size are the principal fuel cell design requirements. DMFC is a system that combines an oxidation reaction and reduction reaction in a most convenient way to produce electricity with minimum cost and complexity. Such fuel cells are expected to be used extensively in the future. Studies performed by C. H. J. Broers and J. A. A. Ketelaar (Proceedings of the IEEE, May 1963) indicate that the fuel cells developed before 1990 used high temperatures and semisolid electrolytes. Even earlier fuel cells, such as the Bacon HYDROXZ fuel cells, were designed to operate at medium temperatures and high pressures. It was reported by C. G. Peattie (IEEE Proceedings, May 1963) that such fuel cell operations are difficult to maintain and require constant monitoring to ensure that the fuel cell is reliable. I discuss next-generation fuel cell design configurations capable of operating with high efficiency and high power output levels over long durations.

Chapter 4 describes the high-power batteries currently used by EVs and HEVs. Performance reviews of these batteries indicate that the rechargeable batteries suffer from poor efficiency as well as excessive weight, size, and operating costs. I describe various next-generation rechargeable batteries best suited for all-electric cars, EVs, and HEVs. Some next-generation batteries might deploy rare earth materials to enhance the battery’s electrical performance and reliability under harsh operating environments. I propose rechargeable battery design configurations capable of providing significant improvements in depth of discharge, state of charge, and service life or longevity.

Chapter 5 focuses on low-power battery configurations that are best suited for compact commercial, industrial, and medical applications. I identify the design aspects and performance characteristics of micro- and nanobatteries best suited for detection, sensing, and monitoring devices. These batteries offer minimum weight, size, and longevity that are highly desirable for certain applications such as perimeter security devices, temperature and humidity sensors, and health monitoring and diagnostic medical system applications. I identify compact, low-power batteries using unique packaging technology for emergency radios and security monitoring devices operating under temperatures as low as −40°C. Most batteries cannot operate under such ultra-low temperatures.

Chapter 6 describes rechargeable batteries for military and battlefield applications where sustainable performance, reliability, safety, and portability are principal operating requirements. Sustaining electrical performance, reliability, safety, and longevity are given serious considerations for rechargeable batteries operating in battlefield environments that involve severe thermal and structural parameters. I emphasize the reliable electrical performance, safety, longevity, compact packaging, advanced materials, and portability for the batteries capable of operating in
military and battlefield systems such as tanks, UAVs, UGCVs, and robot-based battlefield fighting systems.

Chapter 7 is dedicated to rechargeable batteries for possible applications in aerospace equipment and space-based surveillance, reconnaissance, and tracking systems of space-based targets. Stringent performance requirements for the rechargeable batteries deployed in commercial aircraft and military aircraft—including fighter aircraft, helicopters, UAVs for offensive and defensive missions, electronic attack drones, and airborne jamming equipment—are defined to ensure sustainable electrical energy and significantly improved reliability, safety, and longevity, which are essential for carrying out successful missions. I suggest that stringent safety and reliability requirements are needed in severe vibration, shock, and thermal environments. Improved design concepts for aluminum-air batteries using alkaline electrolyte are identified for communication satellite applications, where high-energy density (>500 Wh/kg), ultra-high reliability, and high portability are the principal performance specifications. Reliable modeling and stringent test requirements are defined for the sealed nickel-cadmium and lead-acid batteries because these batteries are ideal for next-generation communications satellites, supersonic fighters, and space-based systems for precision surveillance, reconnaissance, and tracking missions.

Chapter 8 deals with low-power batteries that are widely used for various commercial, industrial, and medical devices that can operate with electrical power ranging from nanowatts to microwatts. Low-power batteries are widely used consumer electronic products such as in infrared cameras, smoke detectors, cell phones, medical devices, minicomputers, tablets, iPhones, iPads, and a host of electronic components. These low-power batteries must meet minimum weight, size, and cost requirements in addition to being exceptionally safe and long-lasting. In past studies, I have indicated that advances in materials and packaging technology can play a significant role in the performance improvements in existing batteries such as nickel-cadmium, alkaline manganese, and lithium-based batteries. I briefly summarize the performance characteristics of low-power batteries in this chapter.

I want to express my sincere gratitude to Ed Curtis (Project Editor) and Marc Johnston (Senior Project Manager) for their meaningful suggestions and assistance in incorporating last-minute changes to the text, completing the book on time, and seeing everything through to fruition—all of which they did with remarkable coherency and efficiency.

Last, but not least, I also want to thank my wife Urmila D. Jha, my daughters Sarita Jha and Vineeta Mangalani, and my son U.S. Army Captain Sanjay Jha for their support, which inspired me to complete the book on time despite the tightly prescribed production schedule.
A. R. Jha received his BS in engineering (electrical) from Aligarh Muslim University in 1954, his MS (electrical and mechanical) from Johns Hopkins University, and his PhD from Lehigh University.

Dr. Jha has authored 10 high-technology books and has published more than 75 technical papers. He has worked for companies such as General Electric, Raytheon, and Northrop Grumman and has extensive and comprehensive research, development, and design experience in the fields of radars, high-power lasers, electronic warfare systems, microwaves, and MM-wave antennas for various applications, nanotechnology-based sensors and devices, photonic devices, and other electronic components for commercial, military, and space applications. Dr. Jha holds a patent for MM-wave antennas in satellite communications.
Contents

Foreword ... xxix
Preface ... xxxv
Author ... xxxix

1 Current Status of Rechargeable Batteries and Fuel Cells 1
 1.1 Rechargeable Batteries ... 1
 1.2 Fundamental Aspects of a Rechargeable Battery 2
 1.2.1 Critical Performance Characteristics of Rechargeable
 Batteries ... 4
 1.2.2 Capabilities of Widely Used Rechargeable Batteries in
 Commercial Applications .. 5
 1.2.3 Recycling of Batteries ... 6
 1.2.3.1 Toxicity of Materials Used in Manufacturing
 Rechargeable Batteries ... 7
 1.2.3.2 Safe Toxicity Limits for Workers 8
 1.2.4 Three Main Characteristics of a Rechargeable Battery 9
 1.2.5 Cost-Effective Justification for the Deployment of a
 Specific Rechargeable Battery for a Specified Application... 10
 1.2.5.1 Techniques to Improve Battery Performance
 in Terms of Weight and Cost 11
 1.2.5.2 Why Use Pb-Acid Batteries for Automobiles? 12
 1.2.5.3 Description of Flow Batteries 12
 1.3 Rechargeable Batteries Irrespective of Power Capability 15
 1.3.1 Rechargeable Batteries for Low- and Moderate-Power
 Applications ... 15
 1.4 Rechargeable Batteries for Commercial and Military Applications .. 16
 1.4.1 High-Power Batteries for Commercial Applications 17
 1.4.2 Critical Role of Ni-Cd in Rechargeable Batteries for
 Military Aircraft ... 19
 1.4.3 Benefits of Ni-MH Rechargeable Batteries for Military
 Aircraft ... 20
1.4.3.1 Electrode Material Cost and Characteristics for Ni-MH Batteries ... 21
1.4.3.2 Impact of Temperature on Discharge Capacity of Ni-MH Batteries .. 22
1.4.3.3 Charging Procedure for a Ni-MH Battery 22
1.4.3.4 Degradation Factors in Ni-MH Battery Performance ... 23
1.4.4 Thermal Batteries for Aerospace and Defense Applications .. 23
1.4.4.1 Batteries for Space Applications ... 24
1.4.5 Rechargeable Batteries for Commercial Applications 24
1.4.5.1 Ni-Zn Batteries for Commercial Applications .. 26
1.4.6 Rechargeable Battery Requirements for Electric and Hybrid Electric Vehicles 27
1.4.6.1 Test Requirements for Rechargeable Batteries Needed for Electric and Hybrid Vehicles 28
1.4.6.2 Predicting the Battery Life of Electric and Hybrid Vehicles ... 29
1.4.6.3 Performance Capabilities of Batteries Currently Used for Electric and Hybrid Vehicles 29
1.5 Batteries for Low-Power Applications ... 34
1.5.1 Batteries Using Thin-Film and Nanotechnologies ... 35
1.5.2 TF Microbatteries .. 36
1.5.3 Charge-Discharge Cycles and Charging Time of Low-Power Batteries 37
1.5.4 Structural Configuration for Low-Power Batteries .. 38
1.5.5 Most Popular Materials Used for Low-Power Batteries .. 38
1.5.5.1 Low-Power Standard Cells .. 38
1.5.5.2 Miniature Primary Batteries .. 39
1.5.6 Low-Power Batteries Using Nanotechnology .. 40
1.5.7 Paper Batteries Using Nanotechnology .. 40
1.6 Fuel Cells .. 41
1.6.1 Description of the Most Popular Fuel Cell Types and Their Configurations 41
1.6.2 Types of Fuel Cells ... 42
1.7 Conclusion ... 42
References .. 43

2 Batteries for Aerospace and Communications Satellites ... 45
2.1 Introduction ... 45
2.2 Onboard Electrical Power System .. 46
2.2.1 Electrical Power-Bus Design Configuration .. 46
2.2.2 Solar-Array Panels .. 47
 2.2.2.1 Solar Panel Performance Requirements to Charge the Space-Based Batteries 49
2.3 Battery Power Requirements and Associated Critical Components ... 49
 2.3.1 Solar-Array Performance Requirements .. 51
 2.3.2 Electrical Power Requirements from the Solar Arrays during Dark Periods .. 51
 2.3.3 Solar Panel Orientation Requirements to Achieve Optimum Power from the Sun 51
 2.3.4 Solar-Array Configurations Best Suited for Spacecraft or Communications Satellite 52
 2.3.5 Direct Energy Transfer System ... 52
2.4 Cost-Effective Design Criterion for Battery-Type Power Systems for Spacecraft ... 54
 2.4.1 Method of Comparison for Optimum Selection of Power System for a Spacecraft 54
 2.4.1.1 Step-by-Step Approach for Power System Performance .. 55
 2.4.1.2 Modeling Requirements to Determine I-V Characteristics .. 56
 2.4.1.3 Impact on Battery Electrical Parameters from Onboard Charging and Discharging 59
2.5 Spacecraft Power System Reliability .. 59
 2.5.1 Failure Rates for Various System Components ... 60
 2.5.2 Failure Rate Estimation ... 61
 2.5.3 Reliability Improvement of the Spacecraft Power System Using CC and PWM Regulator Techniques 61
 2.5.4 Reliability Improvement of the Spacecraft Power System Using DET System, CC, and Battery Booster Techniques ... 64
 2.5.5 Weight and Cost Penalties Associated with Redundant Systems ... 64
 2.5.5.1 Total System Weight and Cost as a Function of Mission Length 66
 2.5.5.2 Reliability Degradation with the Increase in Mission Duration ... 66
 2.5.5.3 Increase in Weight and Cost due to Redundant Systems .. 68
2.6 Ideal Batteries for Aerospace and Communications Satellites ... 69
 2.6.1 Typical Power Requirements for Space-Based Batteries .. 69
 2.6.2 Aging Effect Critical in Space-Based Batteries ... 72
2.7 Performance Capabilities and Battery Power Requirements for the Latest Commercial and Military Satellite Systems .. 72
2.7.1 Commercial Communication Satellite Systems 73
 2.7.1.1 Performance Capabilities of the Commercial Communications Satellite Systems 74
2.8 Military Satellites for Communications, Surveillance, Reconnaissance, and Target Tracking .. 75
 2.8.1 Military Communications Satellites and Their Capabilities ... 76
 2.8.1.1 DSCS-III Communication Satellite System 76
 2.8.1.2 Power Generation, Conditioning, and Storage Requirements 76
 2.8.2 MILSATCOM System .. 78
 2.8.3 European Communications Satellite System 78
2.9 Batteries Best Suited to Power Satellite Communications Satellites .. 79
 2.9.1 Rechargeable Batteries Most Ideal for Communications Satellites ... 79
 2.9.1.1 Performance Capabilities of Ni-Cd Rechargeable Batteries for Space Applications 79
 2.9.1.2 Performance Parameters of Ni-H₂ Batteries 80
 2.9.1.3 Performance Capabilities of Ag-Zn Batteries 81
 2.9.1.4 Space Applications of Lithium-Ion Batteries 82
2.10 Conclusion .. 82
References .. 83

3 Fuel Cell Technology .. 85
3.1 Introduction ... 85
 3.1.1 Classifications of Fuel Cells ... 86
 3.1.1.1 Aqueous Fuel Cell Using Specific Electrolyte ... 86
 3.1.1.2 Fuel Cells Using Semisolid Electrolyte 86
 3.1.1.3 Fuel Cells Using Molten Electrolyte 87
 3.1.2 Classifications of Fuel Cells Based on Electrolytes 88
3.2 Performance Capabilities of Fuel Cells Based on Electrolytes 89
 3.2.1 High-Temperature Fuel Cells with Semisolid Molten Electrolyte ... 89
3.3 Low-Temperature Fuel Cells Using Various Electrolytes 91
 3.3.1 Performance of Low-Temperature and Low-Pressure Fuel Cells Using Aqueous Electrolyte 92
 3.3.2 Output Power Capability of Aqueous Fuel Cells............. 93
3.4 Fuel Cells Using a Combination of Fuels 94
 3.4.1 Liquid-Gas Fuel Cell Design .. 94
 3.4.2 Performance of Liquid-Liquid Fuel Cell Design 94
3.5 Fuel Cell Designs for Multiple Applications 95
 3.5.1 Fuel Cells for Electric Storage Battery Applications 95
3.5.2 DSK-Based Fuel Cells Using Hydrogen-Based DSK Electrodes and Operating under Harsh Conditions............95
 3.5.2.1 Performance of DSK-Based Fuel Cells with Monolayer DSK Electrodes96

3.6 Ion-Exchange Membrane Fuel Cells...98
 3.6.1 Performance Specifications for IEM Fuel Cells and Batteries for Space Applications........................98
 3.6.2 Fuel Cells Using Low-Cost, Porous Silicon Substrate Materials ...99
 3.6.2.1 Hydrogen-Oxygen Power Fuel Cell Using Porous Silicon Structure ..99
 3.6.2.2 Fuel Cell Reactions and Thermodynamic Efficiencies...101
 3.6.2.3 DMFC Devices Using a PEM Structure102
 3.6.2.4 Silicon-Based DMFC Fuel Cells.......................107

3.7 Potential Applications of Fuel Cells..110
 3.7.1 Fuel Cells for Military and Space Applications.........................110
 3.7.1.1 Fuel Cells for Battlefield Applications...............110
 3.7.1.2 Deployment of Fuel Cells in UAVs
 Acting as Electronic Drones Capable of Providing Surveillance, Reconnaissance, Intelligence Gathering, and Missile Attack Capabilities111
 3.7.1.3 Why Fuel Cells for Counterinsurgency Applications? ...112

3.8 Fuel Cells for Aircraft Applications ..116
 3.8.1 Performance Capabilities and Limitations of All-Electric Aircraft or Vehicles116
 3.8.2 Fuel Cells for Electric Vehicles and Hybrid Electric Vehicles ..117

3.9 Fuel Cells for Commercial, Military, and Space Applications ...117
 3.9.1 Fuel Cells for Automobiles, Buses, and Scooters.............118
 3.9.1.1 Low-Cost, High-Efficiency, Low-Temperature H₂-O₂ Fuel Cells...121
 3.9.1.2 Design Aspects and Performance Parameters of a Low-Cost, Moderate-Temperature Fuel Cell.........................122
 3.9.1.3 Design Requirements for Cost-Effective Fuel Cells...125

3.9.2 Ideal Fuel Cells for the Average Homeowner125
 3.9.2.1 Design Requirements for Fuel Cells for Homeowners ...126
Contents

3.9.2.2 Compact Fuel Cells for Cars, Scooters, and Motor Bikes .. 126
3.9.2.3 Fuel Cells for Portable Electric Power Systems ... 128

3.10 Fuel Cells Capable of Operating in Ultra-High-Temperature Environments ... 129
3.10.1 Types of Materials Used in Ultra-High-Temperature Fuel Cells ... 129
3.10.2 Solid Electrolyte Most Ideal for Fuel Cells Operating at Higher Temperatures (600–1,000°C) .. 130
3.10.2.1 Molten Electrolytes Offer Improved Efficiencies in High-Temperature Operations 130
3.10.2.2 Performance Capabilities of Porous Electrodes ... 131
3.10.3 Electrode Kinetics and Their Impact on High-Power Fuel Cell Performance .. 131
3.10.4 Polarization for Chemisorption-Desorption Rates .. 132

3.11 Fuel Cell Requirements for Electric Power Plant Applications ... 133
3.11.1 Performance Requirements of Fuel Cells for Power Plants ... 133

3.12 Summary .. 134

References .. 135

4 Batteries for Electric and Hybrid Vehicles ... 137
4.1 Introduction .. 137
4.2 Chronological Development History of Early Electric Vehicles and Their Performance Parameters .. 139
4.2.1 Electric-Based Transportation Means ... 139
4.3 Electric and Hybrid Electric Vehicles Developed Earlier by Various Companies and Their Performance Specifications 140
4.3.1 ZAPTRUCK .. 140
4.3.2 ZAP ALIAS .. 141
4.3.3 Aptera Motors ... 141
4.3.4 Tesla Motors .. 142
4.3.5 Baker Motors ... 142

4.4 Development History of the Latest Electric and Hybrid Electric Vehicle Types and Their Performance Capabilities and Limitations 143
4.4.1 GM Chevy Volt ... 143
4.4.2 Ford .. 145
4.4.2.1 Ford Focus ... 145
4.4.2.2 Ford Escape .. 146
4.4.2.3 Ford C-Max and Ford C-Max Energi ... 148
4.4.3 Nissan ... 148

4.5 Performance Requirements of Various Rechargeable Batteries ... 149
4.5.1 Battery Pack Energy Requirements ... 151
4.5.2 Battery Materials and Associated Costs .. 151
 4.5.2.1 Materials for Rechargeable Batteries
 Deployed in EVs and EHV................................. 152
 4.5.2.2 Impact of Road and Driving Conditions on
 Battery Charging Times and Costs.................. 153

4.6 Materials for Rechargeable Batteries... 156
 4.6.1 Materials Requirements for Three Functional
 Components of the Li-Ion Battery 156
 4.6.1.1 Anode.. 156
 4.6.1.2 Cathode... 157
 4.6.1.3 Electrolyte .. 157
 4.6.2 Major Performance Characteristic of Li-Ion
 Batteries... 157
 4.6.3 Characteristic of Nickel-Metal-Hydride Rechargeable
 Batteries... 158
 4.6.4 Zinc-Air Rechargeable Fuel Cells for EVs and HEVs............ 158
 4.6.5 Energy Density Levels for Various Rechargeable
 Batteries... 159
 4.6.5.1 Li-Ion Battery Pack Configuration 160
 4.6.5.2 Some Unique Problems Associated with
 Li-Ion Battery Packs 162
 4.6.6 Design Concept Incorporating the Smart Grid
 Technology... 166
 4.6.6.1 Charging-Load Impact on the Utility
 Gridlines... 167
 4.6.6.2 Typical Charging Rates for Rechargeable
 Battery Packs and Electrical Load............... 168
 4.6.7 Materials and Their Properties Best Suited for
 Rechargeable Batteries...................................... 169
 4.6.7.1 Major Material Costs for a 100 Ah High-
 Energy Rechargeable Battery Pack 169
 4.6.7.2 Estimated Costs for Battery Packs Widely
 Used in All-Electric and Hybrid Electric
 Vehicles ... 169
 4.6.8 Impact of Component Costs on the Procurement Cost
 of Battery Packs.. 172
 4.6.8.1 Estimated Current and Future Component
 Costs .. 172
 4.6.8.2 Material Cost Estimates 172

4.7 Critical Role of Rare Earth Materials in the Development of
 EVs and HEVs.. 174
 4.7.1 Identification of Various Rare Earth Materials Used in
 EVs and HEVs ... 175
4.7.2 Impact of Future Rare Earth Materials on the Performance of EVs and HEVs ... 175
4.7.3 Costs Associated with Refining, Processing, and Quality Control Inspection of Rare Earth Materials 177
4.8 Conclusion ... 179
References ... 181

5 Low-Power Rechargeable Batteries for Commercial, Space, and Medical Applications .. 183
5.1 Introduction .. 183
5.2 Low-Power Battery Configurations .. 186
5.2.1 Low-Power Batteries Using Cylindrical Configuration ... 186
5.2.2 Carbon-Zinc Primary Low-Power Batteries and Their Characteristics 186
5.2.3 Performance Capabilities and Limitations of Alkaline Manganese Batteries 187
5.2.4 History of Primary Lithium-Based Batteries and Their Performance Parameters 188
5.2.5 Nickel-Metal-Hydride, Nickel-Cadmium, and Lithium-Ion Rechargeable Batteries 191
5.2.5.1 Peculiarities in Rechargeable Batteries ... 193
5.2.5.2 Design Considerations for Small Low-Power Rechargeable Batteries 193
5.2.5.3 Frequent Mathematical Expressions Used in the Design of Batteries 194
5.2.5.4 Contributing Factors to Battery Weight ... 195
5.3 Batteries for Miniaturized Electronic System Applications .. 195
5.3.1 Brief Description of Rechargeable Batteries Best Suited for Embedded-System Applications .. 197
5.3.1.1 Characteristics of an Alkaline Battery for a Simple Embedded-System Application 197
5.3.1.2 Performance Characteristics of a Battery Best Suited for the Least Complex Embedded-System Application .. 198
5.3.1.3 Characteristics of a Battery Best Suited for the Most Complex Embedded-System Application .. 199
5.3.2 Battery Suitability and Unique Performance Requirements for Aerospace Applications 200
5.3.2.1 Potential Applications of Lithium, Alkaline, and Zinc-Air Batteries 201
5.4 Batteries for Medical Applications .. 204
5.4.1 Recently Developed Batteries for Specific Medical Applications .. 206
 5.4.1.1 Performance Characteristics of Li-I\textsubscript{2} Batteries 206
5.4.2 Microbattery and Smart Nanobattery Technologies Incorporating Lithium Metal for Medical and Military Applications ... 209
 5.4.2.1 Smart Lithium-Ion Batteries .. 210
5.4.3 Low-Power Zinc-Air, Nickel-Metal-Hydride, and Nickel-Cadmium Rechargeable Batteries 210
 5.4.3.1 Zinc-Air Rechargeable Batteries ... 210
 5.4.3.2 Nickel-Cadmium Rechargeable Batteries 211
 5.4.3.3 Nickel-Metal-Hydride Rechargeable Batteries 212

5.5 Selection Criteria for Primary and Secondary (Rechargeable) Batteries for Specific Applications .. 220
 5.5.1 How to Select a Battery for a Particular Application 220
5.6 Conclusion ... 223
References .. 224

6 Rechargeable Batteries for Military Applications 227

6.1 Introduction .. 227
6.2 Potential Battery Types for Various Military System Applications ... 230
 6.2.1 Aluminum-Air Rechargeable Batteries for Military Applications ... 230
 6.2.1.1 Description of Key Elements of These Batteries 232
 6.2.1.2 Performance Capabilities, Limitations, and Uses of Saline Batteries .. 233
 6.2.1.3 Performance Capabilities and Uses of Alkaline Batteries .. 233
 6.2.1.4 Bipolar Silver-Metal-Hydride Batteries for Military Applications ... 236
 6.2.1.5 Rechargeable Silver-Zinc Batteries for Military Applications ... 241
6.3 Low-Power Batteries for Various Applications 247
 6.3.1 Thin-Film Microbatteries Using MEMS Technology 248
 6.3.2 Microbatteries Using Nanotechnology Concepts 248
 6.3.3 Critical Design Aspects and Performance Requirements for Thin-Film Microbatteries 249
6.4 High-Power Lithium and Thermal Batteries for Military Applications ... 249
 6.4.1 Materials Requirements for Cathode, Anode, and Electrolyte Best Suited for High-Power Batteries 251
6.4.1.1 Cathode Materials and Their Chemistries...........251
6.4.1.2 Anode Materials and Their Chemistries..........252
6.4.1.3 Electrolytes and Their Chemistries..............252

6.4.2 Design Requirements for Thermal Batteries for
Specific Applications...253
 6.4.2.1 Design Requirements for TB1 Battery Systems....254
 6.4.2.2 Design Requirements for TB2 Battery Systems.....254

6.4.3 Environmental Requirements for Thermal Battery
Systems..255

6.4.4 Structural Description of the Batteries and Their
Physical Parameters..256

6.4.5 Actual Values of Performance Parameters Obtained
through Laboratory Testing..256

6.4.6 Conclusive Remarks on Thermal Battery Systems.....257

6.5 High-Power Rechargeable Batteries for Underwater Vehicles........259
 6.5.1 Performance Capability and Design Aspects of
 Li-SO\textsubscript{2}Cl\textsubscript{2} Battery Systems....................259
 6.5.2 Characteristics of Electrolytes Required to Achieve
 Improvements in Electrochemistry..........................260
 6.5.3 Effects of Thermal Characteristics on the Flowing
 Electrolyte...260
 6.5.4 Output Power Variations as a Function of Discharge
 Duration in Volta Stack Batteries Using Flowing
 Electrolytes...262
 6.5.5 Impact of Temperature and DOD on the Thermal
 Conductivity and the Specific Heat of the Electrolytes
 Used in Thermal Batteries..263
 6.5.6 Impact of Discharge Duration on the Battery Power
 Output..264
 6.5.7 Electrolyte Conductivity and Optimization of
 Electrolyte..265

6.6 High-Power Battery Systems Capable of Providing Electrical
Energy in Case of Commercial Power Plant Shutdown over a
Long Duration..266
 6.6.1 What Is a Vanadium-Based Redox Battery?..............267
 6.6.2 Potential Applications of Vanadium-Based Redox
 Batteries..267
 6.6.3 Structural Details and Operating Principles of
 Vanadium-Based Redox Batteries.................................268

6.7 Batteries Best Suited for Drones and Unmanned Air Vehicles....269
 6.7.1 Battery Power Requirements for Electronic Drones......269
 6.7.2 Battery Requirements for UAVs..............................270
6.7.3 Batteries for Countering Improvised Explosive Devices....271
6.7.3.1 History of Property Damage and Bodily Injury to Soldiers ..272
6.7.3.2 Anti-IED Techniques to Minimize Property Damage and Injury to Soldiers272
6.7.3.3 Battery Performance Requirements for Dismounted Anti-IED Systems273
6.8 Conclusion ...274
References ..276

7 Batteries and Fuel Cells for Aerospace and Satellite System Applications ..277
7.1 Introduction ..277
7.2 Rechargeable or Secondary Batteries for Commercial and Military Aircraft Applications ...279
7.2.1 Sealed Lead-Acid Batteries for Commercial and Military Applications ..279
7.2.1.1 Optimum Charge, Discharge, and Storage Conditions for Lead-Acid Batteries..............281
7.2.1.2 Pros, Cons, and Major Applications of Lead-Acid Batteries ..281
7.2.1.3 Life Cycle of SLABs for Aircraft Applications ..282
7.2.1.4 Effect of Depth of Discharge on Life Cycle of the Lead-Acid Battery ..282
7.3 Aluminum-Air Batteries for Aerospace Applications285
7.3.1 Performance Capabilities and Limitations of Al-Air Batteries ..285
7.3.2 Impact of Corrosion on Al-Air Battery Performance as a Function of Anode Current Density ...286
7.3.3 Outstanding Characteristics and Potential Applications of Al-Air Rechargeable Battery Systems ..287
7.4 Long-Life, Low-Cost, Rechargeable Silver-Zinc Batteries Best Suited for Aerospace and Aircraft Applications288
7.4.1 Vented Secondary Batteries Best Suited for Aircraft and Aerospace Applications ...288
7.4.2 Typical Self-Discharge Characteristics of an Ag-Zn Battery ..289
7.4.3 Safety, Reliability, and Disposal Requirements for Ag-Zn Batteries ..289
7.4.4 Typical Battery Voltage Level and Cycle Life ...290
7.5 SLABs for Commercial and Military Aircraft Applications291
7.5.1 Performance Aspects of SLABs ..292
7.5.1.1 Performance of the EaglePicher Battery
 Ultralife UB1-2590 ..292
7.5.1.2 SLAB from EaglePicher for Commercial
 Applications ..293
7.5.2 Test Procedures and Conditions for SLABs293
7.5.3 Impact of Charge Rate and Depth of Discharge on the
 Cycle Life of SLABs ..293
7.5.4 Life-Cycle Test Conditions294
7.6 Thermal Battery for Aircraft Emergency Power and
 Low-Earth-Orbiting Spacecraft295
 7.6.1 Performance Capabilities of LiAl/FeS$_2$ Thermal
 Batteries ..297
7.7 Rechargeable Batteries for Naval Weapon System Applications....297
 7.7.1 Performance Characteristics of Li-SOCL$_2$ Batteries.....298
7.8 Thermal Battery Design Configurations and Requirements for
 Launch Vehicle Applications ..298
 7.8.1 Design Aspects and Performance Capabilities of
 Advanced Thermal Batteries298
 7.8.2 Unique Performance Capabilities of Thermal
 Batteries ...299
7.9 High-Temperature Lithium Rechargeable Battery Cells300
 7.9.1 Unique Performance Parameters and Design Aspects
 of Solid Electrolyte Cells ...300
7.10 Solid Electrolyte Technology for Lithium-Based Rechargeable
 Batteries ...301
 7.10.1 Critical Role of Solid Electrolytes301
 7.10.2 Improvement in Performance Parameters of Lithium
 Rechargeable Batteries ..301
 7.10.3 Impact of Lithium Chloride Oxide Salt Concentration
 in the Solution of Liquid Plasticizer on Room-
 Temperature Ionic Conductivity303
7.11 Rechargeable Batteries for Electronic Drones and Various
 UAVs ..303
 7.11.1 Performance Requirements for Batteries Best Suited
 for Electronic Drone Applications303
 7.11.2 Rechargeable Battery Requirements for UAVs,
 Unmanned Combat Air Vehicles, and MAVs304
 7.11.3 Rechargeable Batteries for Glider Applications306
7.12 Rechargeable Batteries for Space-Based Military Systems and
 Satellite Communications ..307
 7.12.1 Rechargeable Battery Requirements for Military
 Space-Based Sensors Requiring Moderate Power Levels ...307
7.13 High-Power Fuel Cells for Satellites with Specific Missions.....310
7.13.1 Performance of the MSK Hydrogen-Oxygen Fuel Cell for Communications Satellite Applications.......................... 313
7.14 Classification of Fuel Cells Based on the Electrolytes 314
7.14.2 Comparing Fuel Cell Parameters 315
7.15 Battery Sources for Spacecraft Applications.......................... 316
7.15.1 Application of the First Principle Model to Spacecraft Operations for Aging.. 316
7.15.2 Typical Performance Characteristics of the 40 Ah Sodium-Sulfur Battery Cell ... 317
7.16 Conclusion .. 317
References .. 320

8 Low-Power Batteries and Their Applications 321
8.1 Introduction .. 321
8.2 Performance Capabilities of Lithium-Based Batteries for Low-Power Applications.. 322
8.2.1 Benefits of Solid Electrolytes in Lithium-Based Rechargeable Batteries ... 323
8.2.2 Total Conductivity of the Battery Material 324
8.3 Batteries for Low-Power Electronic Devices............................ 327
8.3.1 Impact of Materials and Packaging Technology on Battery Performance .. 327
8.3.2 Glossary of Terms Used to Specify Battery Performance Parameters ... 328
8.3.3 Fabrication Aspects of Batteries for Low-Power Electronic Device Applications .. 329
8.3.4 Performance Capabilities and Limitations of Various Primary and Secondary Batteries for Low-Power Applications.. 330
8.3.4.1 Carbon-Zinc Primary Batteries 330
8.3.4.2 Alkaline-Manganese Batteries 331
8.4 Performance Capabilities of Primary Lithium Batteries 331
8.4.1 Lithium-Iodine Batteries ... 332
8.4.2 LiMnO_2 Battery ... 332
8.4.3 Lithium-Carbon Fluoride Battery 333
8.4.4 Lithium-Sulfur-Dioxide Battery 334
8.4.5 Lithium-Thionyl-Chloride Battery 334
8.4.6 Lithium-Ferrous Sulfide (Li-FeS_2) Battery 335
8.4.7 Conclusions on Lithium-Based Batteries 336
8.5 Applications of Small Rechargeable or Secondary Cells 337
8.5.1 Sealed Lead-Acid Batteries .. 338
8.5.2 Small Li-Ion Rechargeable Batteries338
8.5.3 S-Ni-Cd Rechargeable Batteries339
8.5.4 Nickel-Metal-Hydride Rechargeable Batteries340
8.5.5 Lithium-Polymer-Electrolyte Cells340
8.6 Thin-Film Batteries, Microbatteries, and Nanobatteries342
 8.6.1 Structural Aspects and Performance Capabilities of Thin-Film Batteries343
 8.6.2 Thin-Film Metal-Oxide Electrodes for Lithium-Based Microbatteries344
 8.6.3 Performance Capabilities and Applications of Microbatteries348
 8.6.4 Electrical Performance Parameters of Nanobatteries352
 8.6.4.1 Applications of Nanomaterials, Carbon-Nanotubes, and Carbon-Nanotube Arrays in Development Batteries353
8.7 Batteries for Health-Related Applications353
 8.7.1 Battery Requirements for Cardiac Rhythm–Detection Applications354
 8.7.2 Various Batteries Used to Treat Cardiac Diseases356
 8.7.2.1 Li-Ion Batteries Best Suited Primarily for Medical Devices Used to Treat Cardiac Diseases and to Detect Unknown Ailments356
 8.7.2.2 Li-I$_2$ Batteries for Treating Cardiac Diseases357
 8.7.2.3 Li-AgVO$_2$ Batteries for Treatment of Cardiac Diseases358
 8.7.2.4 Batteries for Critical Diagnostic Procedures359
8.8 Batteries for the Total Artificial Heart360
 8.8.1 Major Benefits of Li-Ion Batteries Used for Various Medical Applications361
 8.8.2 Limitations of Li-Ion Batteries362
 8.8.3 Cell-Balancing Requirements for Li-Ion Rechargeable Battery Packs362
 8.8.4 Active-Balancing Technique365
8.9 Conclusion ..366
References ..368
Index ..369