Even in the most secure organizations, information security threats and vulnerabilities are increasing over time. Vulnerabilities are increasing with the complexity of internal infrastructures; complex structures have more single points of failure, and this in turn increases the risk of multiple simultaneous failures. Organizations are adopting new, untried, and partially tested products at ever-increasing rates. Vendors and internal developers alike are relearning the security lessons of the past — one at a time, painful lesson by painful lesson.

Given the rapid rate of change in organizations, minor or incremental improvements in security can be offset or undermined by “organizational entropy.” The introduction of local area networks (LANs) and personal computers (PCs) years ago changed the security landscape, but many security organizations continued to function using centralized control models that have little relationship to the current organizational or technical infrastructures. The Internet has brought new threats to the traditional set of organizational security controls. The success of the Internet model has created a push for electronic commerce (E-commerce) and electronic business (E-business) initiatives in-
volving both the Internet itself and the more widespread use of Internet Protocol (IP)-based extranets (private business-to-business networks).

Sophisticated, effective, and easy-to-use attack tools are widely available on the Internet. The Internet has implicitly linked competing organizations with each other, and linked these organizations to communities that are opposed to security controls of any kind. There is no reason to assume that attack tools developed in the Internet cannot or will not be used within an organization.

External threats are more easily perceived than internal threats, while surveys and studies continue to show that the majority of security problems are internal. With all of this as context, the need for a new security paradigm is clear.

The time has come to apply the lessons learned in Internet and extranet environments to one's own organization. This article proposes to apply Internet/extranet security architectural concepts to internal networks by creating protected enclaves within organizations. Access between enclaves and the enterprise is managed by network guardians. Within enclaves, the security objective is to apply traditional controls consistently and well. Outside of enclaves, current practice (i.e., security controls at variance with formal security policies) is tolerated (one has no choice). This restructuring can reduce some types of network security threats by orders of magnitude. Other threats remain and these must be addressed through traditional security analysis and controls, or accepted as part of normal risk/reward trade-offs.

SECURITY CONTEXT

Security policies, procedures, and technologies are supposed to combine to yield acceptable risk levels for enterprise systems. However, the nature of security threats, and the probability that they can be successfully deployed against enterprise systems, have changed. This is partly a result of the diffusion of computer technology and computer networking into enterprises, and partly a result of the Internet.

For larger and older organizations, security policies were developed to address security vulnerabilities and threats in legacy mainframe environments. Legacy policies have been supplemented to address newer threats such as computer viruses, remote access, and e-mail. In this author's experience, it is rare for current policy frameworks to effectively address network-based threats. LANs and PCs were the first steps in what has become a marathon of increasing complexity and inter-relatedness; intranet (internal networks and applications based on IP), extranet, and Internet initiatives are the most common examples of this.

The Internet has brought network technology to millions. It is an enabling infrastructure for emerging E-business and E-commerce environments. It has a darker side, however, because it also:
Partly because it began as an “open” network, and partly due to the explosion of commercial use, the Internet has also been the proving ground for security architectures, tools, and procedures to protect information in the Internet’s high-threat environment. Examples of the tools that have emerged from this environment include firewalls, virtual private networks, and layered physical architectures. These tools have been extended from the Internet into extranets.

In many sectors — most recently telecommunications, finance, and health care — organizations are growing primarily through mergers and acquisitions. Integration of many new organizations per year is challenging enough on its own. It is made more complicated by external network connectivity (dial-in for customers and employees, outbound Internet services, electronic commerce applications, and the like) within acquired organizations. It is further complicated by the need to integrate dissimilar infrastructure components (e-mail, calendaring, and scheduling; enterprise resource planning (ERP); and human resources (HR) tools). The easiest solution — to wait for the dust to settle and perform long-term planning — is simply not possible in today’s “at the speed of business” climate.

An alternative solution, the one discussed here, is to accept the realities of the business and technical contexts, and to create a “network security master plan” based on the new realities of the internal threat environment. One must begin to treat enterprise networks as if they were an extranet or the Internet and secure them accordingly.

THE ONE BIG NETWORK PARADIGM

Network architects today are being tasked with the creation of an integrated network environment. One network architect described this as a mandate to “connect everything to everything else, with complete transparency.” The author refers to this as the One Big Network paradigm. In this author’s experience, some network architects aim to keep security at arm’s length — “we build it, you secure it, and we don’t have to talk to each other.” This is untenable in the current security context of rapid growth from mergers and acquisitions.

One Big Network is a seductive vision to network designers, network users, and business executives alike. One Big Network will — in theory — allow new and better business interactions with suppliers, with business customers, and with end-consumers. Everyone connected to One Big Network can — in theory — reap great benefits at minimal infrastruc-
ture cost. Electronic business-to-business and electronic-commerce will be — in theory — ubiquitous.

However, one critical element has been left out of this brave new world: security. Despite more than a decade of networking and personal computers, many organizational security policies continue to target the legacy environment, not the network as a whole. These policies assume that it is possible to secure stand-alone “systems” or “applications” as if they have an existence independent of the rest of the enterprise. They assume that attackers will target applications rather than the network infrastructure that links the various parts of the distributed application together. Today’s automated attack tools target the network as a whole to identify and attack weak applications and systems, and then use these systems for further attacks.

One Big Network changes another aspect of the enterprise risk/reward equation: it globalizes risks that had previously been local. In the past, a business unit could elect to enter into an outsource agreement for its applications, secure in the knowledge that the risks related to the agreement affected it alone. With One Big Network, the risk paradigm changes. It is difficult, indeed inappropriate, for business unit management to make decisions about risk/reward trade-offs when the risks are global while the benefits are local.

Finally, One Big Network assumes consistent controls and the loyalty of employees and others who are given access. Study after study, and survey after survey, confirm that neither assumption is viable.

NETWORK SECURITY AND THE ONE BIG NETWORK PARADIGM

It is possible that there was a time when One Big Network could be adequately secured. If it ever existed, that day is long past. Today’s networks are dramatically bigger, much more diverse, run many more applications, connect more divergent organizations, in a more hostile environment where the “bad guys” have better tools than ever before. The author believes that it is not possible to secure, to any reasonable level of confidence, any enterprise network for any large organization where the network is managed as a single “flat” network with “any-to-any” connectivity.

In an environment with no effective internal network security controls, each network node creates a threat against every other node. (In mathematical terms, where there are n network nodes, the number of threats is approximately n².) Where the organization is also on the Internet without a firewall, the effective number of threats becomes essentially infinite (see Exhibit 1).

Effective enterprise security architecture must augment its traditional, applications-based toolkit with *network-based tools* aimed at addressing network-based threats.
INTERNET SECURITY ARCHITECTURE ELEMENTS

How does one design differently for Internet and extranet than one did for enterprises? What are Internet/extranet security engineering principles?

- **Simplicity.** Complexity is the enemy of security. Complex systems have more components, more single points of failure, more points at which failures can cascade upon one another, and are more difficult to certify as “known good” (even when built from known good components, which is rare in and of itself).

- **Prioritization and valuation.** Internet security systems know what they aim to protect. The sensitivity and vulnerability of each element is understood, both on its own and in combination with other elements of the design.

- **Deny by default, allow by policy.** Internet security architectures begin with the premise that all traffic is to be denied. Only traffic that is explicitly required to perform the mission is enabled, and this through defined, documented, and analyzed pathways and mechanisms.

- **Defense in depth, layered protection.** Mistakes happen. New flaws are discovered. Flaws previously believed to be insignificant become important when exploits are published. The Internet security architecture must, to a reasonable degree of confidence, fail in ways that result in continued security of the overall system; the failure (or misconfiguration) of a single component should not result in security exposures for the entire site.
• **End-to-end, path-by-path analysis.** Internet security engineering looks at all components, both on the enterprise side and on the remote side of every transaction. Failure or compromise of any component can undermine the security of the entire system. Potential weak points must be understood and, if possible, managed. Residual risks must be understood, both by the enterprise and by its business partners and customers.

• **Encryption.** In all Internet models, and most extranet models, the security of the underlying network is not assumed. As a result, some mechanism — encryption — is needed to preserve the confidentiality of data sent between the remote users and enterprise servers.

• **Conscious choice, not organic growth.** Internet security architectures are formally created through software and security engineering activities; they do not “just happen.”

THE ENCLAVE APPROACH

This article proposes to treat the enterprise as an extranet. The extranet model invokes an architecture that has security as its first objective. It means identifying what an enterprise genuinely cares about: what it lives or dies by. It identifies critical and securable components and isolates them into protected *enclaves*. Access between enclaves and the enterprise is managed by *network guardians*. Within enclaves, the security objective is to apply traditional controls consistently and well. Outside of enclaves, current practice (i.e., security controls at variance with formal security policies), while not encouraged, is acknowledged as reality. This restructuring can reduce some types of network security threats by orders of magnitude. Taken to the extreme, all business-unit-to-business-unit interactions pass through enclaves (see Exhibit 2).
ENCLAVES
The enclaves proposed here are designed to contain high-value securable elements. Securable elements are systems for which security controls consistent with organizational security objectives can be successfully designed, deployed, operated, and maintained at any desired level of confidence. By contrast, nonsecurable elements might be semi-autonomous business units, new acquisitions, test labs, and desktops (as used by telecommuters, developers, and business partners) — elements for which the cost, time, or effort required to secure them exceeds their value to the enterprise.

Within a secure enclave, every system and network component will have security arrangements that comply with the enterprise security policy and industry standards of due care. At enclave boundaries, security assurance will be provided by network guardians whose rule sets and operational characteristics can be enforced and audited. In other words, there is some level of assurance that comes from being part of an enclave. This greatly simplifies the security requirements that are imposed on client/server architectures and their supporting applications programming interfaces (APIs). Between enclaves, security assurance will be provided by the application of cryptographic technology and protocols.

Enclave membership is earned, not inherited. Enclave networks may need to be created from the ground up, with existing systems shifted onto enclave networks when their security arrangements have been adequately examined.

Enclaves could potentially contain the elements listed below:

1. mainframes
2. application servers
3. database servers
4. network gateways
5. PKI certificate authority and registration authorities
6. network infrastructure components (domain name and time servers)
7. directories
8. windows “domain controllers”
9. approved intranet web servers
10. managed network components
11. Internet proxy servers

All these are shared and securable to a high degree of confidence.

NETWORK GUARDIANS
Network guardians mediate and control traffic flow into and out of enclaves. Network guardians can be implemented initially using network routers. The routers will isolate enclave local area network traffic from...
LANs used for other purposes (development systems, for example, and user desktops) within the same physical space. This restricts the ability of user desktops and other low-assurance systems to monitor traffic between remote enclave users and the enclave. (Users will still have the ability to intercept traffic on their own LAN segment, although the use of switching network hubs can reduce the opportunity for this exposure as well.)

The next step in the deployment of network guardians is the addition of access control lists (ACLs) to guardian routers. The purpose of the ACLs is similar to the functionality of “border routers” in Internet firewalls — screening incoming traffic for validity (anti-spoofing), screening the destination addresses of traffic within the enclave, and to the extent possible, restricting enclave services visible to the remainder of the enterprise to the set of intended services.

Decisions to implement higher levels of assurance for specific enclaves or specific enclave-to-enclave or enclave-to-user communications can be made based on later risk assessments. Today and for the near future, simple subnet isolation will suffice.

ENCLAVE BENEFITS

Adopting an enclave approach reduces network-based security risks by orders of magnitude. The basic reason is that in the modern enterprise, the number of nodes \((n) \) is very large, growing, and highly volatile. The number of enclaves \((e) \) will be a small, stable number. With enclaves, overall risk is on the order of \(n \times e \), compared with \(n \times n \) without enclaves. For large \(n \), \(n \times e \) is much smaller than \(n \times n \).

Business units can operate with greater degrees of autonomy than they might otherwise be allowed, because the only data they will be placing at risk is their own data on their own networks. Enclaves allow the realignment of risk with reward. This gives business units greater internal design freedom.

Because they require documentation and formalization of network data flows, the presence of enclaves can lead to improved network efficiency and scalability. Enclaves enforce an organization’s existing security policies, at a network level, so by their nature they tend to reduce questionable, dubious, and erroneous network traffic and provide better accounting for allowed traffic flows. This aids capacity planning and disaster planning functions.

By formalizing relationships between protected systems and the remainder of the enterprise, enclaves can allow faster connections to business partners. (One of the significant sources of delay this author has seen in setting up extranets to potential business partners is collecting information about the exact nature of network traffic, required to configure network routers and firewalls. The same delay is often seen in setting up connectivity to newly acquired business units.)
Finally, enclaves allow for easier allocation of scarce security resources where they can do the most good. It is far easier to improve the security of enclave-based systems by, say, 50 percent, than it is to improve the overall security of all desktop systems in the enterprise by a similar amount, given a fixed resource allocation.

LIMITATIONS OF ENCLAVES

Enclaves protect only the systems in them; and by definition, they exclude the vast majority of the systems on the enterprise network and all external systems. Some other mechanism is needed to protect data in transit between low-assurance (desktops, external business partner) systems and the high-assurance systems within the enclaves. The solution is a set of confidentiality and authentication services provided by encryption. Providing an overall umbrella for encryption and authentication services is one role of public key infrastructures (PKIs).

From a practical perspective, management is difficult enough for externally focused network guardians (those protecting Internet and extranet connectivity). Products allowing support of an enterprisewide set of firewalls are just beginning to emerge. Recent publicity regarding Internet security events has increased executive awareness of security issues, without increasing the pool of trained network security professionals, so staffing for an enclave migration may be difficult.

Risks remain, and there are limitations. Many new applications are not “firewall friendly” (e.g., Java, CORBA, video, network management). Enclaves may not be compatible with legacy systems. Application security is just as important — perhaps more important than previously — because people connect to the application. Applications, therefore, should be designed securely. Misuse by authorized individuals is still possible in this paradigm, but the enclave system controls the path they use. Enclave architecture is aimed at network-based attacks, and it can be strengthened by integrating virtual private networks (VPNs) and switching network hubs.

IMPLEMENTATION OF ENCLAVES

Enclaves represent a fundamental shift in enterprise network architecture. Stated differently, they re-apply the lessons of the Internet to the enterprise. Re-architecting cannot happen overnight. It cannot be done on a cookie-cutter, by-the-book basis. The author’s often-stated belief is that “security architecture” is a verb; it describes a process, rather than a destination. How can an organization apply the enclave approach to its network security problems? In a word, planning. In a few more words, information gathering, planning, prototyping, deployment, and refinement. These stages are described more fully below.
Information Gathering

Information is the core of any enclave implementation project. The outcome of the information-gathering phase is essentially an inventory of critical systems with a reasonably good idea of the sensitivity and criticality of these systems. Some readers will be fortunate enough to work for organizations that already have information systems inventories from the business continuity planning process, or from recent Year 2000 activities. A few will actually have accurate and complete information. The rest will have to continue on with their research activities.

The enterprise must identify candidate systems for enclave membership and the security objectives for candidates. A starting rule-of-thumb would be that no desktop systems, and no external systems, are candidates for enclave membership; all other systems are initially candidates. Systems containing business-critical, business-sensitive, legally protected, or highly visible information are candidates for enclave membership. Systems managed by demonstrably competent administration groups, to defined security standards, are candidates.

External connections and relationships, via dial-up, dedicated, or Internet paths, must be discovered, documented, and inventoried.

The existing enterprise network infrastructure is often poorly understood and even less well-documented. Part of the information-gathering process is to improve this situation and provide a firm foundation for realistic enclave planning.

Planning

The planning process begins with the selection of an enclave planning group. Suggested membership includes senior staff from the following organizations: information security (with an emphasis on network security and business continuity specialists), network engineering, firewall management, mainframe network operations, distributed systems or client/server operations, E-commerce planning, and any outsource partners from these organizations. Supplementing this group would be technically well-informed representative from enterprise business units.

The planning group’s next objective is to determine the scope of its activity, answering a set of questions including at least:

- Is one enclave sufficient, or is more than one a better fit with the organization?
- Where will the enclaves be located?
- Who will manage them?
- What level of protection is needed within each enclave?
- What is the simplest representative sample of an enclave that could be created within the current organization?

The purpose of these questions is to apply standard engineering practices to the challenge of carving out a secure enclave from the broader
enterprise, and to use the outcome of these practices to make a case to enterprise management for the deployment of enclaves.

Depending on organizational readiness, the planning phase can last as little as a month or as long as a year, involving anywhere from days to years of effort.

Prototyping

Enclaves are not new; they have been a feature of classified government environments since the beginning of computer technology (although typically within a single classification level or compartment). They are the basis of essentially all secure Internet electronic commerce work. However, the application of enclave architectures to network security needs of large organizations is, if not new, at least not widely discussed in the professional literature. Further, as seen in Internet and extranet environments generally, significant misunderstandings can often delay deployment efforts, and efforts to avoid these delays lead either to downward functionality adjustments, or acceptance of additional security risks, or both.

As a result, prudence dictates that any attempt to deploy enclaves within an enterprise be done in a stepwise fashion, compatible with the organization's current configuration and change control processes. The author recommends that organizations considering the deployment of the enclave architecture first evaluate this architecture in a prototype or laboratory environment. One option for doing this is an organizational test environment. Another option is the selection of a single business unit, district, or regional office.

Along with the selection of a locale and systems under evaluation, the enterprise must develop evaluation criteria: what does the organization expect to learn from the prototype environment, and how can the organization capture and capitalize on learning experiences?

Deployment

After the successful completion of a prototype comes general deployment. The actual deployment architecture and schedule depends on factors too numerous to mention in any detail here. The list includes:

- **The number of enclaves.** (The author has worked in environments with as few as one and as many as a hundred, potential enclaves.)
- **Organizational readiness.** Some parts of the enterprise will be more accepting of the enclave architecture than others. Early adopters exist in every enterprise, as do more conservative elements. The deployment plan should make use of early adopters and apply the lessons learned in these early deployments to sway or encourage more change-resistant organizations.
• **Targets of opportunity.** The acquisition of new business units through mergers and acquisitions may well present targets of opportunity for early deployment of the enclave architecture.

Refinement

The enclave architecture is a concept and a process. Both will change over time: partly through organizational experience and partly through the changing technical and organizational infrastructure within which they are deployed.

One major opportunity for refinement is the composition and nature of the network guardians. Initially, this author expects network guardians to consist simply of already-existing network routers, supplemented with network monitoring or intrusion detection systems. The router will initially be configured with a minimal set of controls, perhaps just anti-spoofing filtering and as much source and destination filtering as can be reasonably considered. The network monitoring system will allow the implementers to quickly learn about “typical” traffic patterns, which can then be configured into the router. The intrusion detection system looks for known attack patterns and alerts network administrators when they are found (see Exhibit 3).

In a later refinement, the router may well be supplemented with a firewall, with configuration rules derived from the network monitoring results, constrained by emerging organizational policies regarding authorized traffic (see Exhibit 4).

Still later, where the organization has more than one enclave, encrypted tunnels might be established between enclaves, with selective encryption of traffic from other sources (desktops, for example, or selected business partners) into enclaves. This is illustrated in Exhibit 5.
CONCLUSION

The enterprise-as-extranet methodology gives business units greater internal design freedom without a negative security impact on the rest of the corporation. It can allow greater network efficiency and better network disaster planning because it identifies critical elements and the pathways to them. It establishes security triage. The net results are global threat reduction by orders of magnitude and improved, effective real-world security.

Bryan T. Koch, CISSP, is principal security architect for Secure Computing Corporation.