DATA SECURITY MANAGEMENT

SECURITY MANAGEMENT FOR THE WORLD WIDE WEB

Lynda L. McGhie and Phillip Q. Maier

INSIDE
Security Objectives, Policies and Procedures, Data Classification, Appropriate Use, Security Architecture, Audit Tools, Security Infrastructure

Companies continue to flock to the Internet in ever-increasing numbers, despite the fact that the overall and underlying environment is not secure. To further complicate the matter, vendors, standards bodies, security organizations, and practitioners cannot agree on a standard, compliant, and technically available approach. As a group of investors concerned with the success of the Internet for business purposes, it is critical that we pull our collective resources and work together to quickly establish and support interoperable security standards; open security interfaces to existing security products and security control mechanisms within other program products; and hardware and software solutions within heterogeneous operating systems which will facilitate smooth transitions.

Interfaces and teaming relationships to further this goal include computer and network security and information security professional associations (CSI, ISSA, NCSA), professional technical and engineering organizations (I/EEE, IETF), vendor and product user groups, government and standards bodies, seminars and conferences, training companies/institutes (MIS), and informal networking among practitioners.

Having the tools and solutions available within the marketplace is a beginning, but we also need strategies and migration paths to accommodate and integrate Internet, intranet, and World Wide Web (WWW) technologies into our existing IT infrastructure. While there are

PAYOFF IDEA
This chapter establishes and supports the need for an underlying baseline security framework that will enable companies to successfully evolve to doing business over the Internet and using internal intranet- and World Wide Web-based technologies most effectively within their own corporate computing and networking infrastructures. It presents a solution set that exploits existing skills, resources, and security implementations.
always emerging challenges, introduction of newer technologies, and customers with challenging and perplexing problems to solve, this approach should enable us to maximize the effectiveness of our existing security investments, while bridging the gap to the long awaited and always sought after perfect solution!

Security solutions are slowly emerging, but interoperability, universally accepted security standards, application programming interfaces (APIs) for security, vendor support and cooperation, and multiplatform security products are still problematic. Where there are products and solutions, they tend to have niche applicability, be vendor-centric or only address one of a larger set of security problems and requirements. For the most part, no single vendor or even software/vendor consortium has addressed the overall security problem within open systems and public networks. This indicates that the problem is very large, and that we are years away from solving today's problem, not to mention tomorrow's.

By acknowledging today's challenges, benchmarking today's requirements, and understanding our "as is condition" accordingly, we as security practitioners can best plan for security in the twenty-first century. Added benefits adjacent to this strategy will hopefully include a more cost-effective and seamless integration of security policies, security architectures, security control mechanisms, and security management processes to support this environment.

For most companies, the transition to "open" systems technologies is still in progress and most of us are somewhere in the process of converting mainframe applications and systems to distributed network-centric client-server infrastructures. Nevertheless, we are continually challenged to provide a secure environment today, tomorrow, and in the future, including smooth transitions from one generation to another. This article considers a phased integration methodology that initially focuses on the update of corporate policies and procedures, including most security policies and procedures; secondly, enhances existing distributed security architectures to accommodate the use of the Internet, intranet, and WWW technologies; thirdly, devises a security implementation plan that incorporates the use of new and emerging security products and techniques; and finally, addresses security management and infrastructure support requirements to tie it all together.

It is important to keep in mind, as with any new and emerging technology, Internet, intranet, and WWW technologies do not necessarily bring new and unique security concerns, risks, and vulnerabilities, but rather introduce new problems, challenges and approaches within our existing security infrastructure.

Security requirements, goals, and objectives remain the same, while the application of security, control mechanisms, and solution sets are different and require the involvement and cooperation of multidisciplined technical and functional area teams. As in any distributed environment,
there are more players, and it is more difficult to find or interpret the overall requirements or even talk to anyone who sees or understands the big picture. More people are involved than ever before, emphasizing the need to communicate both strategic and tactical security plans broadly and effectively throughout the entire enterprise. The security challenges and the resultant problems become larger and more complex in this environment. Management must be kept up-to-date and thoroughly understand overall risk to the corporation's information assets with the implementation or decisions to implement new technologies. They must also understand, fund, and support the influx of resources required to manage the security environment.

As with any new and emerging technology, security should be addressed early in terms of understanding the requirements, participating in the evaluation of products and related technologies, and finally in the engineering, design, and implementation of new applications and systems. Security should also be considered during all phases of the systems development life cycle. This is nothing new, and many of us have learned this lesson painfully over the years as we have tried to retrofit security solutions as an adjunct to the implementation of some large and complex system. Another important point to consider throughout the integration of new technologies, is “technology does not drive or dictate security policies, but the existing and established security policies drive the application of new technologies.” This point must be made to management, customers, and supporting IT personnel.

For most of us, the WWW will be one of the most universal and influential trends impacting our internal enterprise and its computing and networking support structure. It will widely influence our decisions to extend our internal business processes out to the Internet and beyond. It will enable us to use the same user interface, the same critical systems and applications, work towards one single original source of data, and continue to address the age-old problem: how can I reach the largest number of users at the lowest cost possible?

THE PATH TO INTERNET/BROWSER TECHNOLOGIES
Everyone is aware of the staggering statistics relative to the burgeoning growth of the Internet over the last decade. The use of the WWW can even top that growth, causing the traffic on the Internet to double every six months. With five internal Web servers being deployed for every one external Web server, the rise of the intranet is also more than just hype. Companies are predominately using the web technologies on the intranet to share information and documents. Future application possibilities are basically any enterprise-wide application such as education and training; corporate policies and procedures; human resources applications such as a resume, job posting, etc.; and company information. External Web applications include marketing and sales.
For the purpose of this discussion, we can generally think of the Internet in three evolutionary phases. While each succeeding phase has brought with it more utility and the availability of a wealth of electronic and automated resources, each phase has also exponentially increased the risk to our internal networks and computing environments.

Phase I, the early days, is characterized by a limited use of the Internet, due in the most part to its complexity and universal accessibility. The user interface was anything but user friendly, typically limited to the use of complex UNIX-based commands via line mode. Security by obscurity was definitely a popular and acceptable way of addressing security in those early days, as security organizations and MIS management convinced themselves that the potential risks were confined to small user populations centered around homogeneous computing and networking environments. Most companies were not externally connected in those days, and certainly not to the Internet.

Phase II is characterized by the introduction of the first versions of database search engines, including Gopher and Wide Area Information System (WAIS). These tools were mostly used in the government and university environments and were not well known nor generally proliferated in the commercial sector.

Phase III brings us up to today's environment, where Internet browsers are relatively inexpensive, readily available, easy to install, easy to use through GUI frontends and interfaces, interoperable across heterogeneous platforms, and ubiquitous in terms of information access.

The growing popularity of the Internet and the introduction of the Internet should not come as a surprise to corporate executives who are generally well read on such issues and tied into major information technology (IT) vendors and consultants. However, quite frequently companies continue to select one of two choices when considering the implementation of WWW and Internet technologies. Some companies, who are more technically astute and competitive, have jumped in totally and are exploiting Internet technologies, electronic commerce, and the use of the Web. Others, of a more conservative nature and more technically inexperienced, continue to maintain a hard-line policy on external connectivity, which basically continues to say "NO."

Internet technologies offer great potential for cost savings over existing technologies, representing huge investments over the years in terms of revenue and resources now supporting corporate information infrastructures and contributing to the business imperatives of those enterprises. Internet-based applications provide a standard communications interface and protocol suite ensuring interoperability and access to the organization's heterogeneous data and information resources. Most WWW browsers run on all systems and provide a common user interface and ease of use to a wide range of corporate employees.
Benefits derived from the development of WWW-based applications for internal and external use can be categorized by the cost savings related to deployment, generally requiring very little support or end-user training. The browser software is typically free, bundled in vendor product suites, or very affordable. Access to information, as previously stated, is ubiquitous and fairly straightforward.

Use of internal WWW applications can change the very way organizations interact and share information. When established and maintained properly, an internal WWW application can enable everyone on the internal network to share information resources, update common use applications, receive education and training, and keep in touch with colleagues at their home base, from remote locations, or on the road.

INTERNET/WWW SECURITY OBJECTIVES

As mentioned earlier, security requirements do not change with the introduction and use of these technologies, but the emphasis on where security is placed and how it is implemented does change. The company’s Internet, intranet, and WWW security strategies should address the following objectives, in combination or in prioritized sequence, depending on security and access requirements, company philosophy, the relative sensitivity of the company’s information resources, and the business imperative for using these technologies.

- Ensure that Internet- and WWW-based application and the resultant access to information resources are protected and that there is a cost-effective and user-friendly way to maintain and manage the underlying security components, over time as new technology evolves and security solutions mature in response.
- Information assets should be protected against unauthorized usage and destruction. Communication paths should be encrypted as well as transmitted information that is broadcast over public networks.
- Receipt of information from external sources should be decrypted and authenticated. Internet- and WWW-based applications, WWW pages, directories, discussion groups, and databases should all be secured using access control mechanisms.
- Security administration and overall support should accommodate a combination of centralized and decentralized management.
- User privileges should be linked to resources, with privileges to those resources managed and distributed through directory services.
- Mail and real-time communications should also be consistently protected. Encryption key management systems should be easy to administer, compliant with existing security architectures, compatible with existing security strategies and tactical plans, and secure to manage and administer.
New security policies, security architectures, and control mechanisms should evolve to accommodate this new technology; not change in principle or design.

Continue to use risk management methodologies as a baseline for deciding how many of the new Internet, intranet, and WWW technologies to use and how to integrate them into the existing Information Security Distributed Architecture. As always, ensure that the optimum balance between access to information and protection of information is achieved during all phases of the development, integration, implementation, and operational support life cycle.

INTERNET AND WWW SECURITY POLICIES AND PROCEDURES
Having said all of this, it is clear that we need new and different policies, or minimally, an enhancement or refreshing of current policies supporting more traditional means of sharing, accessing, storing, and transmitting information. In general, high-level security philosophies, policies, and procedures should not change. In other words, who is responsible for what (the fundamental purpose of most high-level security policies) does not change. These policies are fundamentally directed at corporate management, process, application and system owners, functional area management, and those tasked with the implementation and support of the overall IT environment. There should be minimal changes to these policies, perhaps only adding the Internet and WWW terminology.

Other high level corporate policies must also be modified, such as the use of corporate assets, responsibility for sharing and protecting corporate information, etc. The second-level corporate policies, usually more procedure oriented typically addressing more of the "how," should be more closely scrutinized and may change the most when addressing the use of the Internet, intranet, and Web technologies for corporate business purposes. New classifications and categories of information may need to be established and new labeling mechanisms denoting a category of information that cannot be displayed on the Internet or new meanings to "all allow" or "public" data. The term "public," for instance, when used internally, usually means anyone authorized to use internal systems. In most companies, access to internal networks, computing systems, and information is severely restricted and "public" would not mean unauthorized users, and certainly not any user on the Internet.

Candidate lower-level policies and procedures for update to accommodate the Internet and WWW include external connectivity, network security, transmission of data, use of electronic commerce, sourcing and procurement, electronic mail, nonemployee use of corporate information and electronic systems, access to information, appropriate use of electronic systems, use of corporate assets, etc.
New policies and procedures (most likely enhancements to existing policies) highlight the new environment and present an opportunity to dust off and update old policies. Involve a broad group of customers and functional support areas in the update to these policies. The benefits are many. It exposes everyone to the issues surrounding the new technologies, the new security issues and challenges, and gains buy-in through the development and approval process from those who will have to comply when the policies are approved. It is also an excellent way to raise the awareness level and get attention to security up front.

The most successful corporate security policies and procedures address security at three levels, at the management level through high-level policies, at the functional level through security procedures and technical guidelines, and at the end-user level through user awareness and training guidelines. Consider the opportunity to create or update all three when implementing Internet, intranet, and WWW technologies.

Since these new technologies increase the level of risk and vulnerability to your corporate computing and network environment, security policies should probably be beefed up in the areas of audit and monitoring. This is particularly important because security and technical control mechanisms are not mature for the Internet and WWW and therefore more manual processes need to be put in place and mandated to ensure the protection of information.

The distributed nature of Internet, intranet, and WWW and their inherent security issues can be addressed at a more detailed level through an integrated set of policies, procedures, and technical guidelines. Because these policies and processes will be implemented by various functional support areas, there is a great need to obtain buy-in from these groups and ensure coordination and integration through all phases of the systems' life cycle. Individual and collective roles and responsibilities should be clearly delineated to include monitoring and enforcement.

Other areas to consider in the policy update include legal liabilities, risk to competition-sensitive information, employees' use of company time while “surfing” the Internet, use of company logos and trade names by employees using the Internet, defamation of character involving company employees, loss of trade secrets, loss of the competitive edge, ethical use of the Internet, etc.

DATA CLASSIFICATION SCHEME

A data classification scheme is important to both reflect existing categories of data and introduce any new categories of data needed to support the business use of the Internet, electronic commerce, and information sharing through new intranet and WWW technologies. The whole area of nonemployee access to information changes the approach to categorizing and protecting company information.
The sample chart in Exhibit 1 is an example of how general to specific categories of company information can be listed, with their corresponding security and protection requirements to be used as a checklist by application, process, and data owners to ensure the appropriate level of protection, and also as a communication tool to functional area support personnel tasked with resource and information protection. A supplemental chart could include application and system names familiar to corporate employees, or types of general applications and information such as payroll, HR, marketing, manufacturing, etc.

Note that encryption may not be required for the same level of data classification in the mainframe and proprietary networking environment, but in “open” systems and distributed and global networks transmitted data are much more easily compromised. Security should be applied based on a thorough risk assessment considering the value of the information, the risk introduced by the computing and network environment, the technical control mechanisms feasible or available for implementation, and the ease of administration and management support. Be careful to apply the right “balance” of security. Too much is just as costly and ineffective as too little in most cases.

APPROPRIATE USE POLICY

It is important to communicate management’s expectation for employee’s use of these new technologies. An effective way to do that is to supplement the corporate policies and procedures with a more user-friendly bulletined list of requirements. The list should be specific, highlight employee expectations and outline what employees can and cannot do on the Internet, intranet, and WWW. The goal is to communicate with each and every employee, leaving little room for doubt or confusion. An Appropriate Use Policy (Exhibit 2) could achieve these goals and reinforce the higher level. Areas to address include the proper use of employee time, corporate computing and networking resources, and acceptable material to be viewed or downloaded to company resources.

Most companies are concerned with the Telecommunications Act and their liabilities in terms of allowing employees to use the Internet on company time and with company resources. Most find that the trade-off
is highly skewed to the benefit of the corporation in support of the utility of the Internet. Guidelines must be carefully spelled out and coordinated with the legal department to ensure that company liabilities are addressed through clear specification of roles and responsibilities. Most companies do not monitor their employee’s use of the Internet or the intranet, but find that audit trail information is critical to prosecution and defense for computer crime.

Overall computer security policies and procedures are the baseline for any security architecture and the first thing to do when implementing any new technology. However, you are never really finished as the development and support of security policies is an iterative process and should be revisited on an ongoing basis to ensure that they are up-to-date, accommodate new technologies, address current risk levels, and reflect the company’s use of information and network and computing resources.

There are four basic threats to consider when you begin to use Internet, intranet, and Web technologies:

EXHIBIT 2 — Appropriate Use Policy

Examples of Unacceptable use include but not limited to the following:

1. Using Co. equipment, functions or services for non-business related activities while on company time; which in effect is mischarging;
2. Using the equipment or services for financial or commercial gain;
3. Using the equipment or services for any illegal activity;
4. Dial-in usage from home for Internet services for personal gain;
5. Accessing non-business related news groups or BBS;
6. Willful intent to degrade or disrupt equipment, software or system performance;
7. Vandalizing the data or information of another user;
8. Gaining unauthorized access to resources or information;
9. Invading the privacy of individuals;
10. Masquerading as or using an account owned by another user;
11. Posting anonymous messages or mail for malicious intent;
12. Posting another employee’s personal communication or mail without the original author’s consent; this excludes normal business E-mail forwarding;
13. Downloading, storing, printing or displaying files or messages that are profane, obscene, or that use language or graphics which offends or tends to degrade others;
14. Transmitting company data over the network to non-company employees without following proper release procedures;
15. Loading software obtained from outside the Corporation’s standard company’s procurement channels onto a company system without proper testing and approval;
16. Initiating or forwarding electronic chain mail.

Examples of Acceptable Use includes but is not limited to the following:

1. Accessing the Internet, computer resources, fax machines and phones for information directly related to your work assignment;
2. Off-hour usage of computer systems for degree related school work where allowed by local site practices;
• Unauthorized alteration of data
• Unauthorized access to the underlying operating system
• Eavesdropping on messages passed between a server and a browser
• Impersonation

Your security strategies should address all four. These threats are common to any technology in terms of protecting information. In the remainder of this chapter, we will build upon the “general good security practices and traditional security management” discussed in the first section and apply these lessons to the technical implementation of security and control mechanisms in the Internet, intranet, and Web environments.

The profile of a computer hacker is changing with the exploitation of Internet and Web technologies. Computerized bulletin board services and network chat groups link computer hackers (formerly characterized as loners and misfits) together. Hacker techniques, programs and utilities, and easy-to-follow instructions are readily available on the net. This enables hackers to more quickly assemble the tools to steal information and break into computers and networks, and it also provides the “would-be” hacker a readily available arsenal of tools.

INTERNAL/EXTERNAL APPLICATIONS

Most companies segment their networks and use firewalls to separate the internal and external networks. Most have also chosen to push their marketing, publications, and services to the public side of the firewall using file servers and web servers. There are benefits and challenges to each of these approaches. It is difficult to keep data synchronized when duplicating applications outside the network. It is also difficult to ensure the security of those applications and the integrity of the information. Outside the firewall is simply outside, and therefore also outside the protections of the internal security environment. It is possible to protect that information and the underlying system through the use of new security technologies for authentication and authorization. These techniques are not without trade-offs in terms of cost and ongoing administration, management, and support.

Security goals for external applications that bridge the gap between internal and external, and for internal applications using the Internet, intranet, and WWW technologies should all address these traditional security controls:

• Authentication
• Authorization
• Access control
• Audit
• Security administration
Some of what you already used can be ported to the new environment, and some of the techniques and supporting infrastructure already in place supporting mainframe-based applications can be applied to securing the new technologies.

Using the Internet and other public networks is an attractive option, not only for conducting business-related transactions and electronic commerce, but also for providing remote access for employees, sharing information with business partners and customers, and supplying products and services. However, public networks create added security challenges for IS management and security practitioners, who must devise security systems and solutions to protect company computing, networking, and information resources. Security is a CRITICAL component.

Two watchdog groups are trying to protect on-line businesses and consumers from hackers and fraud. The council of Better Business Bureaus has launched BBBOnline, a service that provides a way to evaluate the legitimacy of on-line businesses. In addition, the national computer security association, NCSA, launched a certification program for secure WWW sites. Among the qualities that NCSA looks for in its certification process are extensive logging, the use of encryption including those addressed in this chapter, and authentication services.

There are a variety of protection measures that can be implemented to reduce the threats in the Web/server environment, making it more acceptable for business use. Direct server protection measures include secure Web server products which use differing designs to enhance the security over user access and data transmittal. In addition to enhanced secure Web server products, the Web server network architecture can also be addressed to protect the server and the corporate enterprise which could be placed in a vulnerable position due to served enabled connectivity. Both secure server and secure web server designs will be addressed, including the application and benefits to using each.

WHERE ARE YOUR USERS?
Discuss how the access point where your users reside contributes to the risk and the security solutions set. Discuss the challenge when users are all over the place and you have to rely on remote security services that are only as good as the users’ correct usage. Issues of evolving technologies can also be addressed. Concerns for multiple layering of controls and dissatisfied users with layers of security controls, passwords, hoops, etc. can also be addressed.

WEB BROWSER SECURITY STRATEGIES
Ideally, Web browser security strategies should use a network-based security architecture that integrates your company’s external Internet and
the internal intranet security policies. Ensure that users on any platform, with any browser, can access any system from any location if they are authorized and have a “need-to-know.” Be careful not to adopt the latest evolving security product from a new vendor or an old vendor capitalizing on a hot marketplace.

Recognizing that the security environment is changing rapidly, and knowing that we don’t want to change our security strategy, architecture, and control mechanisms every time a new product or solution emerges, we need to take time and use precautions when devising browser security solutions. It is sometimes a better strategy to stick with the vendors that you have already invested in and negotiate with them to enhance their existing products, or even contract with them to make product changes specific or tailored to accommodate your individual company requirements. Be careful in these negotiations as it is extremely likely that other companies have the very same requirements. User groups can also form a common position and interface to vendors for added clout and pressure.

You can basically secure your web server as much as or as little as you wish with the current available security products and technologies. The tradeoffs are obvious: cost, management, administrative requirements, and time. Solutions can be hardware, software and personnel intensive.

Enhancing the security of the web server itself has been a paramount concern since the first Web server initially emerged, but progress has been slow in deployment and implementation. As the market has mushroomed for server use, and the diversity of data types that are being
placed on the server has grown, the demand has increased for enhanced Web server security. Various approaches have emerged, with no single de facto standard yet emerging (though there are some early leaders — among them Secure Sockets Layer [SSL] and Secure Hypertext Transfer Protocol [S-HTTP]). These are two significantly different approaches, but both widely seen in the marketplace.

Secure Socket Layer (SSL) Trust Model

One of the early entrants into the secure Web server and client arena is Netscape’s Commerce Server, which utilizes the Secure Sockets Layer (SSL) trust model. This model is built around the RSA Public Key/Private Key architecture. Under this model, the SSL-enabled server is authenticated to SSL-aware clients, proving its identity at each SSL connection. This proof of identity is conducted through the use of a public/private key pair issued to the server validated with x.509 digital certificates. Under the SSL architecture, web server validation can be the only validation performed, which may be all that is needed in some circumstances. This would be applicable for those applications where it is important to the user to be assured of the identity of the target server, such as when placing company orders, or other information submission where the client is expecting some important action to take place. Exhibit 4 diagrams this process.

Optionally, SSL sessions can be established that also authenticate the client and encrypt the data transmission between the client and the server for multiple I/P services (HTTP, Telnet, FTP). The multiservice encryption capability is available because SSL operates below the application layer and above the TCP/IP connection layer in the protocol stack, and thus other TCP/IP services can operate on top of a SSL-secured session.

Optionally, authentication of a SSL client is available when the client is registered with the SSL server, and occurs after the SSL-aware client connects and authenticates the SSL server. The SSL client then submits its digital certificate to the SSL server, where the SSL server validates the client’s certificate and proceeds to exchange a session key to provide encrypted transmissions between the client and the server. Exhibit 5 provides a graphical representation of this process for mutual client and server authentication under the SSL architecture. This type of mutual client/server authentication process should be considered when the data being submitted by the client are sensitive enough to warrant encryption prior to being submitted over a network transmission path.

Though there are some “costs” with implementing this architecture, these cost variables must be considered when proposing a SSL server implementation to enhance your web server security. First of all, the design needs to consider whether to only provide server authentication, or both server and client authentication. The issue when expanding the authentication to include client authentication includes the administrative over-
EXHIBIT 4 — Server Authentication

Unencrypted User Request

CS responds with server encrypted session to client authenticating validity of server.

Client

Commerce Server*

*Server may hold its own certificate internal
EXHIBIT 5 — Client and Server Authentication

Request Encrypted w/Registered Users Private Key
CS responds to user by decrypting request with user public key and responding w/an encrypted session key.

*Assumes CS has access to a key directory server, most likely LDAP compliant.
head of managing the user keys, including a key revocation function. This consideration, of course, has to assess the size of the user base, potential for growth of your user base, and stability of your proposed user community. All of these factors will impact the administrative burden of key management, especially if there is the potential for a highly unstable or transient user community.

The positive considerations for implementing a SSL-secured server is the added ability to secure other I/P services for remote or external SSL clients. SSL-registered clients now have the added ability to communicate securely by utilizing Tenet and FTP (or other I/P services) after passing SSL client authentication and receiving their session encryption key. In general the SSL approach has very broad benefits, but these benefits come with the potential added burden of higher administration costs, though if the value of potential data loss is great, then it is easily offset by the administration cost identified above.

Secure Hypertext Transfer Protocol (S-HTTP)

Secure Hypertext Transfer Protocol, (S-HTTP) is emerging as another security tool and incorporates a flexible trust model for providing secure web server and client HTTP communications. It is specifically designed for direct integration into HTTP transactions, with its focus on flexibility for establishing secure communications in a HTTP environment while providing transaction confidentiality, authenticity/integrity, and nonrepudiation. S-HTTP incorporates a great deal of flexibility in its trust model by leaving defined variable fields in the header definition which identifies the trust model or security algorithm to be used to enable a secure transaction. S-HTTP can support symmetric or asymmetric keys, and even a Kerberos-based trust model. The intention of the authors was to build a flexible protocol that supports multiple trusted modes, key management mechanisms, and cryptographic algorithms through clearly defined negotiation between parties for specific transactions.

At a high level the transactions can begin in a untrusted mode (standard HTTP communication), and “setup” of a trust model can be initiated so that the client and the server can negotiate a trust model, such as a symmetric key-based model on a previously agreed-upon symmetric key, to begin encrypted authentication and communication. The advantage of a S-HTTP-enabled server is the high degree of flexibility in securely communicating with web clients. A single server, if appropriately configured and network enabled, can support multiple trust models under the S-HTTP architecture and serve multiple client types. In addition to being able to serve a flexible user base, it can also be used to address multiple data classifications on a single server where some data types require higher-level encryption or protection than other data types on the same server and therefore varying trust models could be utilized.
The S-HTTP model provides flexibility in its secure transaction architecture, but focuses on HTTP transaction vs. SSL which mandates the trust model of a public/private key security model, which can be used to address multiple I/P services. But the S-HTTP mode is limited to only HTTP communications.

INTERNET, INTRANET, AND WORLD WIDE WEB SECURITY ARCHITECTURES
Implementing a secure server architecture, where appropriate, should also take into consideration the existing enterprise network security architecture and incorporate the secure server as part of this overall architecture. In order to discuss this level of integration, we will make an assumption that the secure web server is to provide secure data dissemination for external (outside the enterprise) distribution and/or access. A discussion of such a network security architecture would not be complete without addressing the placement of the Web server in relation to the enterprise firewall (the firewall being the dividing line between the protected internal enterprise environment and the external “public” environment).

Setting the stage for this discussion calls for some identification of the requirements, so the following list outlines some sample requirements for this architectural discussion on integrating a secure HTTP server with an enterprise firewall.

- Remote client is on public network accessing sensitive company data
- Remote client is required to authenticate prior to receiving data
- Remote client only accesses data via HTTP
- Data is only updated periodically
- Host site maintains firewall
- Sensitive company data must be encrypted on public networks
- Company support personnel can load HTTP server from inside the enterprise

Based on these high-level requirements, an architecture could be set up that would place a S-HTTP server external to the firewall, with one-way communications from inside the enterprise “to” the external server to perform routine administration, and periodic data updates. Remote users would access the S-HTTP server utilizing specified S-HTTP secure transaction modes, and be required to identify themselves to the server prior to being granted access to secure data residing on the server. Exhibit 6 depicts this architecture at a high level. This architecture would support a secure HTTP distribution of sensitive company data, but doesn’t provide absolute protection due to the placement of the S-HTTP server entirely external to the protected enterprise. There are some schools of thought that since this server is unprotected by the company-
controlled firewall, the S-HTTP server itself is vulnerable, thus risking the very control mechanism itself and the data residing on it. The opposing view on this is that the risk to the overall enterprise is minimized, as only this server is placed at risk and its own protection is the S-HTTP process itself. This process has been a leading method to secure the data, without placing the rest of the enterprise at risk, by placing the S-HTTP server logically and physically outside the enterprise security firewall.

A slightly different architecture has been advertised that would position the S-HTTP server inside the protected domain, as Exhibit 7 indicates. The philosophy behind this architecture is that the controls of the firewall (and inherent audits) are strong enough to control the authorized access to the S-HTTP server, and also thwart any attacks against the server itself. Additionally, the firewall can control external users so that they only have S-HTTP access via a logically dedicated path, and only to the designated S-HTTP server itself, without placing the rest of the internal enterprise at risk. This architecture relies on the absolute ability of the firewall and S-HTTP of always performing their designated security function as defined; otherwise, the enterprise has been opened for attack through the allowed path from external users to the internal S-HTTP server. Because these conditions are always required to be true and intact, the model with the server external to the firewall has been more readily accepted and implemented.

Both of these architectures can offer a degree of data protection in a S-HTTP architecture when integrated with the existing enterprise firewall architecture. As an aid in determining which architectural approach is
right for a given enterprise, a risk assessment can provide great input to the decision. This risk assessment may include decision points such as:

- Available resources to maintain a high degree of firewall audit and S-HTTP server audit
- Experience in firewall and server administration
- Strength of their existing firewall architecture

SECURE WWW CLIENT CONFIGURATION
There is much more reliance on the knowledge and cooperation of the end user and the use of a combination of desktop and workstation software, security control parameters within client software, and security products all working together to mimic the security of the mainframe and distributed application’s environments. Consider the areas below during the risk assessment process and the design of WWW security solution sets.

- Ensure that all internal and external company-used workstations have resident and active antivirus software products installed. Preferably use a minimum number of vendor products to reduce security support and vulnerabilities as there are varying vendor schedules for providing virus signature updates.
- Ensure that all workstation and browser client software is preconfigured to return all WWW and other external file transfers to temporary files on the desktop. Under no circumstances should client server applications or process-to-process automated routines download files to system files, preference files, bat files, start-up files, etc.
- Ensure that Java script is turned off in the browser client software desktop configuration.
- Configure browser client software to automatically flush the cache, either upon closing the browser or disconnecting from each Web site.
• When possible or available, implement one of the new security products that scans WWW downloads for viruses.
• Provide user awareness and education to all desktop WWW and Internet users to alert them to the inherent dangers involved in using the Internet and WWW. Include information on detecting problems, their roles and responsibilities, your expectations, security products available, how to set and configure their workstations and program products, etc.
• Suggest or mandate the use of screen savers, security software programs, etc., in conjunction with your security policies and distributed security architectures.

This is a list of current areas of concern from a security perspective. There are options that when combined can tailor the browser to the specifications of individual workgroups or individuals. These options will evolve with the browser technology. The list should continue to be modified as security problems are corrected or as new problems occur.

AUDIT TOOLS AND CAPABILITIES

As we move further and further from the "good old days" when we were readily able to secure the "glass house," we rely more on good and sound auditing practices. As acknowledged throughout this chapter, security control mechanisms are mediocre at best in today's distributed networking and computing environments. Today's auditing strategies must be robust, available across multiple heterogeneous platforms, computing and network based, real-time and automated, and integrated across the enterprise.

Today, information assets are distributed all over the enterprise, and therefore auditing strategies must acknowledge and accept this challenge and accommodate more robust and dicey requirements. As is the case when implementing distributed security control mechanisms, in the audit environment there are also many players and functional support areas involved in collecting, integrating, synthesizing, reporting, and reconciling audit trails and audit information. The list includes applications and applications developers and programs, database management systems and database administrators, operating systems and systems administrators, local area network (LAN) administrators and network operating systems (NOS), security administrators and security software products, problem reporting and tracking systems and helpline administrators, and others unique to the company's environment.

As well as real-time, the audit system should provide for tracking and alarming, both to the systems and network management systems, and via pagers to support personnel. Policies and procedures should be devel-
oped for handling alarms and problems, i.e., isolate and monitor, disconnect, etc.

There are many audit facilities available today, including special audit software products for the Internet, distributed client server environments, WWW clients and servers, Internet firewalls, E-mail, News Groups, etc. The application of one or more of these must be consistent with your risk assessment, security requirements, technology availability, etc. The most important point to make here is the fundamental need to centralize distributed systems auditing (not an oxymoron). Centrally collect, sort, delete, process, report, take action and store critical audit information. Automate any and all steps and processes. It is a well-established fact that human beings cannot review large numbers of audit records and logs and reports without error. Today’s audit function is an adjunct to the security function, and as such is more important and critical than ever before. It should be part of the overall security strategy and implementation plan.

The overall audit solutions set should incorporate the use of browser access logs, enterprise security server audit logs, network and firewall system authentication server audit logs, application and middle-ware audit logs, URL filters and access information, mainframe system audit information, distributed systems operating system audit logs, database management system audit logs, and other utilities that provide audit trail information such as accounting programs, network management products, etc.

The establishment of auditing capabilities over WWW environments follows closely with the integration of all external WWW servers with the firewall, as previously mentioned. This is important when looking at the various options available to address a comprehensive audit approach.

WWW servers can offer a degree of auditability based on the operating system of the server on which they reside. The more time-tested environments such as UNIX are perceived to be difficult to secure, whereas the emerging NT platform with its enhanced security features supposedly make it a more secure and trusted platform with a wide degree of audit tools and capabilities (though the vote is still out on NT, as some feel it hasn’t had the time and exposure to discover all the potential security holes, perceived or real). The point, though, is that in order to provide some auditing the first place to potentially implement the first audit is on the platform where the WWW server resides. Issues here are the use of privileged accounts and file logs and access logs for log-ins to the operating system, which could indicate a backdoor attack on the WWW server itself. If server-based log are utilized, they of course must be file protected and should be off-loaded to a nonserver-based machine to protect against after-the-fact corruption.
Though the server logs aren’t the only defensive logs that should be relied upon in a public WWW server environment, the other components in the access architecture should be considered for use as audit log tools. As previously mentioned, the WWW server should be placed in respect to its required controls in relation to the network security firewall. If it is a S-HTTP server that is placed behind (Exhibit 4) the firewall then the firewall of course has the ability to log all access to the S-HTTP server and provide a log separate from the WWW server-based logs, and is potentially more secure should the WWW server somehow become compromised.

The prevalent security architecture places externally accessible WWW servers wholly outside the firewall, thus virtually eliminating the capability of auditing access to the WWW server except from users internal to the enterprise. In this case, the network security audit in the form of the network management tool, which monitors the “health” of enterprise components can be called upon to provide a minimal degree of audit over the status of your external WWW server. This type of audit can be important when protecting data which resides on your external server from being subject to “denial of service” attacks, which are not uncommon for external devices. But by utilizing your network management tool to guard against such attacks, and monitoring log alerts on the status or health of this external server, you can reduce the exposure to this type of attack.

Other outside devices that can be utilized to provide audit include the network router between the external WWW server and the true external environment, though these devices are not normally readily set up for comprehensive audit logs, but in some critical cases they could be reconfigured with added hardware and minimal customized programming. One such example would be the “I/P Accounting” function on a popular router product line, which allows off-loading of addresses and protocols through its external interface. This could be beneficial to analyze traffic, and if an attack alert was generated from one of the other logs mentioned, then these router logs could assist in possibly identifying the origin of the attack.

Another possible source of audit logging could come from “back end” systems that the WWW server is programmed to “mine” data from. Many WWW environments are being established to serve as “front ends” for much larger data repositories, such as Oracle data bases, where the WWW server receives user requests for data over HTTP, and the WWW server launches SQL Net queries to a back end Oracle data base. In this type of architecture the more developed logging inherent to the Oracle environment can be called upon to provide audits over the WWW queries. The detailed Oracle logs can specify the quantity, data type, and other activity over all the queries that the WWW server has made, thus providing a comprehensive activity log that can be consolidated and reviewed should any type of WWW server compromise
WWW/Internet Audit Considerations

After your distributed Internet, intranet, and WWW security policies are firmly established, distributed security architectures are updated to accommodate this new environment. When planning for audit, and security control mechanisms are designed and implemented, you should plan how you will implement the audit environment — not only which audit facilities to use to collect and centralize the audit function, but how much and what type of information to capture, how to filter and review the audit data and logs, and what actions to take on the violations or anomalies identified. Additional consideration should be given to secure storage and access to the audit data. Other considerations include:

- Timely resolution of violations
- Disk space storage availability
- Increased staffing and administration
- In-house developed programming
- Ability to alarm and monitor in real time

WWW SECURITY FLAWS

As with all new and emerging technology, many initial releases come with some deficiency. But this has been of critical importance when that deficiency can impact the access or corruption of a whole corporation or enterprise’s display to the world. This can be the case with Web implementations utilizing the most current releases which have been found to contain some impacting code deficiencies, though up to this point most of these deficiencies have been identified before any major damage has been done. This underlines the need to maintain a strong link or connection with industry organizations that announce code shortcomings that impact a site's Web implementation. A couple of the leading organizations are CERT, the Computer Emergency Response Team, and CIAC, Computer Incident Advisory Capability.
Just a few of these types of code or design issues that could impact a site's web security include initial issues with the Sun JAVA language and Netscapes JavaScript (which is an extension library of their HyperText Markup Language, HTML).

The Sun Java language was actually designed with some aspects of security in mind, though upon its initial release there were several functions that were found to be a security risk. One of the most impacting bugs in an early release was the ability to execute arbitrary machine instructions by loading a malicious Java applet. By utilizing Netscape's caching mechanism a malicious machine instruction can be downloaded into a user's machine and Java can be tricked into executing it. This doesn't present a risk to the enterprise server, but the user community within one's enterprise is of course at risk.

Other Sun Java language bugs include the ability to make network connections with arbitrary hosts (though this has since been patched with the following release) and Java's ability to launch denial of service attacks through the use of corrupt applets.

These types of security holes are more prevalent than the security profession would like to believe, as the JavaScript environment also was found to contain capabilities that allowed malicious functions to take place. The following three are among the most current and prevalent risks:

- JavaScript's ability to trick the user into uploading a file on his local hard disk to an arbitrary machine on the Internet
- The ability to hand out the user's directory listing from the internal hard disk
- The ability to monitor all pages the user visits during a session

The following are among the possible protection mechanisms:

- Maintain monitoring through CERT or CIAC, or other industry organizations that highlight such security risks.
- Utilize a strong software distribution and control capability, so that early releases aren't immediately distributed, and that new patched code known to fix a previous bug is released when deemed safe.
- In sensitive environments it may become necessary to disable the browser's capability to even utilize or execute Java or JavaScript — a selectable function now available in many browsers.

In the last point, it can be disturbing to some in the user community to disallow the use of such powerful tools, because they can be utilized against trusted Web pages, or those that require authentication through the use of SSL or S-HTTP. This approach can be coupled with the connection to S-HTTP pages where the target page has to prove its identity to the client user. In this case, enabling Java or JavaScript to execute on
the browser (a user-selectable option) could be done with a degree of confidence.

Other perceived security risks exist in a browser feature referred to as HTTP “Cookies.” This is a feature that allows servers to store information on the client machine in order to reduce the store and retrieve requirements of the server. The cookies file can be written to by the server, and that server, in theory, is the only one that can read back their cookies entry. Uses of the cookie file include storing user's preferences or browser history on a particular server or page, which can assist in guiding the user on their next visit to that same page. The entry in the cookies file identifies the information to be stored and the uniform resource locator (URL) or server page that can read back that information, though this address can be masked to some degree so multiple pages can read back the information.

The perceived security concern is that pages impersonating cookies-readable pages could read back a user's cookies information without the user knowing it, or discover what information is stored in their cookie file. The threat depends on the nature of the data stored in the cookie file, which is dependent on what the server chooses to write into a user's cookie file. This issue is currently under review, with the intention of adding additional security controls to the cookie file and its function. At this point it is important that users are aware of the existence of this file, which is viewable in the Macintosh environment as a Netscape file and in the Win environment as a cookies.txt file. There are already some inherent protections in the cookie file: one is the fact that the cookie file currently has a maximum of 20 entries, which potentially limits the exposure. Also, these entries can be set up with expiration dates to they don't have an unlimited lifetime.

WWW SECURITY MANAGEMENT
Consider the overall management of the Internet, intranet, and WWW environment. As previously mentioned, there are many players in the support role and for many of them this is not their primary job or priority. Regardless of where the following items fall in the support infrastructure, also consider these points when implementing ongoing operational support:

- Implement WWW browser and server standards.
- Control release and version distribution.
- Implement secure server administration including the use of products and utilities to erase sensitive data cache (NSClean).
- Ensure prompt problem resolution, management, and notification.
- Follow industry and vendor discourse on WWW security flaws and bugs including CERT distribution.
• Stay current on new Internet and WWW security problems, Netscape encryption, JAVA, Cookies, etc.

WWW SUPPORT INFRASTRUCTURE
• WWW servers accessible from external networks should reside outside the firewall and be managed centrally.
• By special approval, decentralized programs can manage external servers, but must do so in accordance with corporate policy and be subjected to rigorous audits.
• Externally published company information must be cleared through legal and public relations departments (i.e., follow company procedures).
• External outbound http access should utilize proxy services for additional controls and audit.
• WWW application updates must be authenticated utilizing standard company security systems (as required).
• Filtering and monitoring software must be incorporated into the firewall.
• The use of discovery crawler programs must be monitored and controlled.
• Virus software must be active on all desktop systems utilizing WWW.
• Externally published information should be routinely updated or verified through integrity checks.

In conclusion, as information security practitioners embracing the technical challenges of the twenty-first century, we are continually challenged to integrate new technology smoothly into our existing and underlying security architectures. Having a firm foundation or set of security principles, frameworks, philosophies and supporting policies, procedures, technical architectures, etc. will assist in the transition and our success.

Approach new technologies by developing processes to manage the integration and update the security framework and supporting infrastructure, as opposed to changing it. The Internet, intranet, and the World Wide Web is exploding around us — what is new today is old technology tomorrow. We should continue to acknowledge this fact while working aggressively with other MIS and customer functional areas to slow down the train to progress, be realistic, disciplined, and plan for new technology deployment.

Lynda McGhie is director of Information Security for Lockheed Martin Corporation in Bethesda, MD.

Phillip Q. Maier is a member of the Secure Network Initiative at Lockheed Martin in Sunnyvale, CA.