BROADBAND ACCESS METHODS

High-speed access is becoming increasingly popular for connecting to the Internet and to corporate networks. The term “high-speed” is generally taken to mean transfer speeds above the 56Kbps of analog modems, or the 64 to 128Kbps speeds of ISDN. There are a number of technologies that provide transfer rates from 256Kbps to 1.544Mbps and beyond. Some offer asymmetrical uplink and downlink speeds that may go as high as 6Mbps. These high-speed access methods include DSL, cable modems, and wireless point-to-multipoint access.

DSL services include all of the so-called “digital subscriber line” access methods that utilize conventional copper telephone cabling for the physical link from customer premise to central office (CO). The most popular of these methods is ADSL, or asymmetrical digital subscriber line, where a existing POTS (plain old telephone service) dial-up line does double duty by having a higher frequency digital signal multiplexed over the same pair. Filters at the user premise and at the central office tap off the digital signal and send it to the user's PC and the CO router, respectively.

The actual transport of the ADSL data is via ATM, a factor invisible to the user, who is generally using TCP/IP over Ethernet. A key security

PAYOFF IDEA

The advent of high-speed, broadband Internet access presents new security issues to users of such services. DSL, cable modem, and wireless systems present many similar threats to the user’s PC, or local network. Cable modems connect users to a shared segment that has the same security risks as a shared hub. Other users on the same segment potentially have full access to all other PCs through Windows® Networking. Although DSL is generally considered more secure than cable or wireless, significant issues still exist. Wireless network access, often used as an alternative where cable and DSL services are unavailable, has similar potential problems. Using a combination of network address translation and personal firewalls can significantly reduce these broadband risks.
feature of DSL service is that the transport media (one or two pairs) is exclusive to a single user. In a typical neighborhood of homes or businesses, individual pairs from each premise are, in turn, consolidated into larger cables of many pairs that run eventually to the service provider’s CO. As with a conventional telephone line, each user is isolated from other users in the neighborhood. This is inherently more secure than competing high-speed technologies. The logical structure of an ADSL distribution within a neighborhood is shown in Exhibit 1A.

Cable modems (CMs) allow a form of high-speed shared access over media used for cable television (CATV) delivery. Standard CATV video channels are delivered over a frequency range from 54 MHz to several hundred megahertz. Cable modems simply use a relatively narrow band of those frequencies that are unused for TV signal delivery. CATV signals are normally delivered through a series of in-line amplifiers and signal splitters to a typical neighborhood cable segment. Along each of these final segments, additional signal splitters (or taps) distribute the CATV signals to users. Adding two-way data distribution to the segment is relatively easy because splitters are inherently two-way devices and no amplifiers are within the segment. However, the uplink signal from users in each segment must be retrieved at the head of the segment and either repeated into the next up-line segment or converted and transported separately.

As shown in Exhibit 1B, each neighborhood segment is along a tapped coaxial cable (in most cases) that terminates in a common-equipment cabinet (similar in design to the subscriber-line interface cabinets used in telephone line multiplexing). This cabinet contains the equipment to filter off the data signal from the neighborhood coax segment and transport it back to the cable head-end. Alternative data routing may be provided between the common equipment cabinets and the NOC (network operations center), often over fiber-optic cables. As a matter of fact, these neighborhood distribution cabinets are often used as a transition point for all CATV signals between fiber-optic transmission links and the installed coaxial cable to the users. Several neighborhood segments may terminate in each cabinet. When a neighborhood has been rewired for fiber distribution and cable modem services, the most often outward sign is the appearance of a four-foot high green or gray metal enclosure. These big green (or gray) boxes are metered and draw electrical power from a local power pole and often have an annoying little light to warn away would-be villains.

Many areas do not have ready availability of cable modem circuits or DSL. Both technologies require the user to be relatively near the corresponding distribution point and both need a certain amount of infrastructure expansion by the service provider. A wireless Internet option exists for high-speed access from users that are in areas that are otherwise unserved. The term “wireless Internet” refers to a variety of noncellular ra-
dio services that interconnect users to a central access point, generally
with a very high antenna location on a high building, a broadcast tower,
or even a mountaintop. Speeds can be quite comparable to the lower
ranges of DSL and CM (i.e., 128 to 512Kbps). Subscriber fees are some-
what higher, but still a great value to someone who would otherwise
have to deal with low-speed analog dial access.

Wireless Internet is often described as point-to-multipoint operation.
This refers to the coverage of several remote sites from a central site, as
opposed to point-to-point links that are intended to serve a pair of sites
exclusively. As shown in Exhibit 1C, remote user sites at homes or busi-
nesses are connected by a radio link to a central site. In general, the cen-
tral site has an omnidirectional antenna (one that covers equally in all
radial directions) while remote sites have directional antennas that point at the central antenna.

Wireless Internet users share the frequency spectrum among all the users of a particular service frequency. This means that these remote users must share the available bandwidth as well. As a result, as with the cable modem situation, the actual data throughput depends on how many users are online and active. In addition, all the transmissions are essentially broadcast into the air and can be monitored or intercepted with the proper equipment. Some wireless links include a measure of encryption but the key may still be known to all subscribers to the service.

There are several types of wireless systems permitted in the United States, as with the European Union, Asia, and the rest of the world. Some of these systems permit a single provider to control the rights to a particular frequency allocation. These exclusively licensed systems protect users from unwanted interference from other users and protect the large investment required of the service provider. Other systems utilize a frequency spectrum that is shared and available to all. For example, the 802.11 systems at 2.4 GHz and 5.2 GHz are shared-frequency, nonlicensed systems that can be adapted to point-to-multipoint distribution.

Wireless, or radio-frequency (RF), distribution is subject to all of the same distance limitations, antenna designs, antenna siting, and interference considerations of any RF link. However, in good circumstances, wireless Internet provides a very satisfactory level of performance, one that is comparable to its wired competitors.

BROADBAND SECURITY RISKS

Traditional remote access methods, by their very nature, provide a fair measure of link security. Dial-up analog and dial-on-demand ISDN links have relatively good protection along the path between the user's computer and the access service provider (SP). Likewise, dedicated links to an Internet service provider (ISP) are inherently safe as well, barring any intentional (and unauthorized/illegal) tapping. However, this is not necessarily the case with broadband access methods.

Of the common broadband access methods, cable modems and wireless Internet have inherent security risks because they use shared media for transport. On the other hand, DSL does indeed utilize an exclusive path to the CO but has some more subtle security issues that are shared with the other two methods.

The access-security issue with cable modems is probably the most significant. Most PC users run a version of the Microsoft Windows® operating system, popularly referred to just as Windows. All versions of Windows since Windows 95® have included a feature called peer-to-peer networking. This feature is in addition to the TCP/IP protocol stack that supports Internet-oriented traffic. Microsoft Windows NT® and Win-
A standard cable modem is essentially a two-way repeater connected between a user's PC (or local network) and the cable segment. As such, it repeats everything along your segment to your local PC network and everything on your network back out to the cable segment. Thus, all the "private" conversations one might have with one's network-connected printer or other local PCs are available to everyone on the segment. In addition, every TCP/IP packet that goes between one's PC and the Internet is also available for eavesdropping along the cable segment. This is a very serious security risk, at least among those connected to a particular segment. It makes an entire group of cable modem users vulnerable to monitoring, or even intrusion. Specific actions to mitigate this risk are discussed later.

Wireless Internet acts essentially as a shared Ethernet segment, where the segment exists purely in space rather than within a copper medium. It is "ethereal," so to speak. What this means in practice is that every transmission to one user also goes to every authorized (and unauthorized) station within reception range of the central tower. Likewise, a user's transmissions back to the central station are available to anyone who is capable of receiving that user's signal. Fortunately, the user's remote antenna is fairly directional and is not at the great height of the central tower. But someone who is along the path between the two can still pick up the user's signal.

Many wireless Internet systems also operate as a bridge rather than a TCP/IP router, and can pass the NetBIOS protocol used for file and printer sharing. Thus, they may be susceptible to the same type of eavesdropping and intrusion problems of the cable modem, unless they are protected by link encryption.

In addition to the shared-media security issue, broadband security problems are more serious because of the vast communication bandwidth that is available. More than anything else, this makes the broadband user valuable as a potential target. An enormous amount of data can be transferred in a relatively short period of time. If the broadband user operates mail systems or servers, these may be more attractive to someone wanting to use such resources surreptitiously.

Another aspect of broadband service is that it is "always on," rather than being connected on-demand as with dial-up service. This also makes the user a more accessible target. How can a user minimize exposure to these and other broadband security weaknesses?
INCREASING BROADBAND SECURITY

The first security issue to deal with is visibility. Users should immediately take steps to minimize exposure on a shared network. Disabling or hiding processes that advertise services or automatically respond to inquiries effectively shields the user's computer from intruding eyes. Shielding the computer will be of benefit whether the user is using an inherently shared broadband access, such as with cable modems or wireless, or has DSL or dial-up service. Also, remember that the user might be on a shared Ethernet at work or on the road. Hotel systems that offer high-speed access through a Ethernet connection are generally shared networks and thus are subject to all of the potential problems of any shared broadband access.

Shared networks clearly present a greater danger for unauthorized access because the Windows Networking protocols can be used to detect and access other computers on the shared medium. However, that does not mean that users are unconditionally safe in using other access methods such as DSL or dial-up. The hidden danger in DSL or dial-up is the fact that the popular peer-to-peer networking protocol, NetBIOS, can be transported over TCP/IP. In fact, a common attack is a probe to the IP port that supports this.

There are some specific steps users can take to disable peer networking if they are a single-PC user. Even if there is more than one PC in the local network behind a broadband modem, users can take action to protect their resources.

Check Vulnerability

Before taking any local-PC security steps, users might want to check on their vulnerabilities to attacks over the Web. This is easy to do and serves as both a motivation to take action and a check on security steps. Two sites are recommended: www.grc.com and www.symantec.com/securitycheck. GRC.com is the site created by Steve Gibson for his company, Gibson Research Corp. Users should look for the “shields up” icon to begin the testing. GRC is free to use and does a thorough job of scanning for open ports and hidden servers.

The Symantec URL listed should take the user directly to the testing page. Symantec can also test vulnerabilities in Microsoft Internet Explorer as a result of ActiveX controls. Potentially harmful ActiveX controls can be inadvertently downloaded in the process of viewing a Web page. The controls generally have full access to the computer's file system, and can thus contain viruses or even hidden servers. As is probably known, the Netscape browser does not have these vulnerabilities, although both types of browsers are somewhat vulnerable to Java and JavaScript attacks. According to information on this site, the online free version at Symantec does not have all the test features of the retail version, so users must purchase the tool to get a full test.
These sites will probably convince users to take action. It is truly amazing how a little demonstration can get users serious about security. Remember that this eye-opening experience will not decrease security in any way … it will just decrease a user’s false sense of security!

Start by Plugging Holes in Windows

To protect a PC against potential attack that might compromise personal data or even harm a PC, users will need to change the Windows Networking default configurations. Start by disabling file and printer sharing, or by password-protecting them, if one must use these features. If specific directories must be shared to other users on the local network, share just that particular directory rather than the entire drive. Protect each resource with a unique password. Longer passwords, and passwords that use a combination of upper/lower case, numbers, and allow punctuation, are more secure.

Windows networking is transported over NetBIOS protocol, which is inherently unroutable. The advantage to this feature is that any NetBIOS traffic, such as that for printer or file sharing, is blocked at any WAN router. Unfortunately, Windows has the flexibility of encapsulating NetBIOS within TCP/IP packets, which are quite routable. When using IP networking, users may be inadvertently enabling this behavior. As a matter of fact, it is a little difficult to block. However, there are some steps users can take to isolate their NetBIOS traffic from being routed out over the Internet.

The first step is to block NetBIOS over TCP/IP. To do this in Windows, simply go to the property dialog for TCP/IP protocol and disable “NetBIOS over TCP/IP.” Likewise, disable “Set this protocol to be the default.” Now go to bindings and uncheck all of the Windows-oriented applications, such as Microsoft Networking or Microsoft Family Networking.

The next step is to give local networking features an alternate path. Do this by adding IPX/SPX compatible protocol from the list in the Network dialog. After adding IPX/SPX protocol, configure its properties to take up the slack created with TCP/IP. Set it to be the default protocol; check the “enable NetBIOS over IPX/SPX” option; and check the Windows-oriented bindings that were unchecked for TCP/IP. In exiting the dialog, by checking OK, notice that a new protocol has been added, called “NetBIOS support for IPX/SPX compatible Protocol.” This added feature allows NetBIOS to be encapsulated over IPX, isolating the protocol from its native mode and from unwanted encapsulation over TCP/IP.

This action provides some additional isolation of the local network’s NetBIOS communication because IPX is generally not routed over the user’s access device. Be sure that IPX routing, if available, is disabled on the router. This will not usually be a problem with cable modems (which do not route) or with DSL connections because both are primarily used in IP-only networks. At the first IP router link, the IPX will be blocked. If the simple NAT firewall described in the next section is used, IPX will
likewise be blocked. However, if ISDN is used for access, or some type of T1 router, check that IPX routing is off.

Now Add a NAT Firewall

Most people do not have the need for a full-fledged firewall. However, a simple routing device that provides network address translation (NAT) can shield internal IP addresses from the outside world while still providing complete access to Internet services. Exhibit 2A shows the normal connection provided by a cable or DSL modem. The user PC is assigned a public IP address from the service provider’s pool. This address is totally visible to the Internet and available for direct access and, therefore, for direct attacks on all IP ports.

A great deal of security can be provided by masking internal addresses inside a NAT router. This device is truly a router because it connects between two IP subnets, the internal “private” network and the external “public” network. A private network is one with a known private network subnet address, such as 192.168.x.x or 10.x.x.x. These private addresses are nonroutable because Internet Protocol convention allows them to be duplicated at will by anyone who wants to use them. In the example shown in Exhibit 2B, the NAT router is inserted between the user’s PC (or internal network of PCs) and the existing cable or DSL modem. The NAT router can act as a DHCP (Dynamic Host Control Protocol) server to the internal private network, and it can act as a DHCP client to the service provider’s DHCP server. In this manner, dynamic IP
address assignment can be accomplished in the same manner as before, but the internal addresses are hidden from external view.

A NAT router is often called a simple firewall because it does the address-translation function of a full-featured firewall. Thus, the NAT router provides a first level of defense. A common attack uses the source IP address of a user's PC and steps through the known and upper IP ports to probe for a response. Certain of these ports can be used to make an unauthorized access to the user's PC. Although the NAT router hides the PC user's IP address, it too has a valid public IP address that may now be the target of attacks. NAT routers will often respond to port 23 Telnet or port 80 HTTP requests because these ports are used for the router's configuration. The user must change the default passwords on the router, as a minimum; and, if allowable, disable any access to these ports from the Internet side.

Several companies offer simple NAT firewalls for this purpose. In addition, some products are available that combine the NAT function with the cable or DSL modem. For example, LinkSYS provides a choice of NAT routers with a single local Ethernet port or with four switched Ethernet ports. List prices for these devices are less than $200, with much lower street prices.

Install a Personal Firewall

The final step in securing a user's personal environment is to install a personal firewall. The current software environment includes countless user programs and processes that access the Internet. Many of the programs that connect to the Internet are obvious: the e-mail and Web browsers that everyone uses. However, one may be surprised to know that a vast array of other software also makes transmissions over the Internet connection whenever it is active. And if using a cable modem or DSL modem (or router), one's connection is always active if one's PC is on.

For example, Windows 98 has an update feature that regularly connects to Microsoft to check for updates. A virus checker, personal firewall, and even personal finance programs can also regularly check for updates or, in some cases, for advertising material. The Windows update is particularly persistent and can check every five or ten minutes if it is enabled. Advertisements can annoyingly pop up a browser mini-window, even when the browser is not active.

However, the most serious problems arise from the unauthorized access or responses from hidden servers. Chances are that a user has one or more Web server processes running right now. Even the music download services (e.g., MP3) plant servers on PCs. Surprisingly, these are often either hidden or ignored, although they represent a significant security risk. These servers can provide a back door into a PC than can be opened without the user's knowledge. In addition, certain viruses operate by planting a stealth server that can be later accessed by an intruder.
A personal firewall will provide a user essential control over all of the Internet accesses that occur to or from his PC. Several products are on the market to provide this function. Two of these are Zone Alarm from Zone Labs (www.zonelabs.com) and Black Ice Defender from Network Ice (www.networkice.com). Other products are available from Symantec and Network Associates. The use of a personal firewall will alert the user to all traffic to or from his broadband modem and allow the user to choose whether he wants that access to occur. After an initial setup period, Internet access will appear perfectly normal, except that unwanted traffic, probes, and accesses will be blocked.

Some of the products alert the user to unwanted attempts to connect to his PC. Zone Alarm, for example, will pop up a small window to advise the user of the attempt, the port and protocol, and the IP address of the attacker. The user can also observe and approve the ability of his applications to access the Internet. After becoming familiar with the behavior of these programs, the user can direct the firewall to always block or allow access. In addition, the user can explicitly block server behavior from particular programs. A log is kept of actions so that the user can review the firewall activities later, whether or not he disables the pop-up alert window.

Thus far, this article has concentrated on security for broadband access users. However, after seeing what the personal firewall detects and blocks, users will certainly want to put it on all their computers. Even dial-up connections are at great risk from direct port scanning and NetBIOS/IP attacks. After installation of a personal firewall, it is not unusual to notice probes beginning within the first 30 seconds after connecting. And if one monitors these alerts, one will continue to see such probes blocked over the course of a session. Do not be alarmed. These probes were happening before the firewall was installed, just without the user’s knowledge. The personal firewall is now blocking all these attempts before they can do any harm. Broadband users with a consistent public IP address will actually see a dramatic decrease over time in these probes. The intruders do not waste time going where they are unwelcome.

SUMMARY

Broadband access adds significant security risks to a network or a personal computer. The cable modem or DSL connection is normally always active and the bandwidth is very high compared to slower dial-up or ISDN methods. Consequently, these connections make easy targets for intrusion and disruption. Wireless Internet users have similar vulnerabilities, in addition to possible eavesdropping through the airwaves. Cable modem users suffer additional exposure to nonroutable workgroup protocols, such as Windows-native NetBIOS.
Steps should be taken in three areas to help secure PC resources from unwanted intrusions.

1. Eliminate or protect Windows workgroup functions such as file and printer sharing. Change the default passwords and enable IPX encapsulation if these functions are absolutely necessary.
2. Add a simple NAT firewall/router between the access device and PCs. This will screen internal addresses from outside view and eliminate most direct port scans.
3. Install and configure a personal firewall on each connected PC. This will provide control over which applications and programs have access to Internet resources.

James Trulove has more than 25 years of experience in data networking with companies such as Lucent, Ascend, AT&T, Motorola, and Intel. He has a background in designing, configuring, and implementing multimedia communications systems for local and wide area networks, using a variety of technologies. He writes on networking topics and is the author of *LAN Wiring, An Illustrated Guide to Network Cabling* and *A Guide to Fractional T1*, and the editor of *Broadband Networking*, as well as numerous articles on networking.